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Abstract

In this thesis we will investigate the dynamical behavior of the
following rational difference equation

xn+1 =
α+ βxn + γxn−k
A+Bxn + Cxn−k

n = 0, 1, ... (1)

where the parameters α, β, γ and A, B, C and the initial conditions
x−k, . . . , x−1, x0 are non-negative real numbers, and the denominator
is nonzero.

Our concentration here, is on the global stability, the periodic char-
acter, the analysis of semi-cycles and the invariant intervals of the
positive solution of the above equation.

It is worth to mention that our difference equation is the general case
of the rational equation which is studied by Kulenovic and Ladas
in their monograph ( Dynamics of Second Order Rational Difference
Equation with Open Problems and Conjectures, 2002 ).
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Introduction

The dynamical system is the study of the phenomena that evolves in space
and / or time by looking at the dynamic behavior or the geometrical and
topological properties of the solutions. Whether a particular system comes
from biology, physics, chemistry, or even the social sciences, dynamical sys-
tems is the subject that provides the mathematical tools for its analysis.

The dynamics of any situation refers to how the situation changes over the
course of time. A dynamical system is a physical setting together with rules
for how the setting changes or evolves from one moment of time to the next.

In simplest terms, a dynamical system is a system that changes over time. Thus
the solar system is a dynamical system, the united state economy is a dy-
namical system, the weather is a dynamical system, the human heart is a
dynamical system.

In mathematics, a dynamical system is a system whose behavior at a given
time depends on its behavior at one or more previous time.

There are two types of dynamical system:

1. Differential equations, time is continuous.

2. Difference equations, time is discrete.

In this thesis we will investigate one of the kth order nonlinear difference
equations.

This thesis consists of five chapters, chapter one deals with linear and non-
linear difference equations and the solution of these equations, while chapter
two deals with the behavior of solutions for difference equations. We will
focus on the equilibrium points and their stability, periodic points and the
stair step diagrams.
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Chapter three is the main one in which we discuss the dynamics of

xn+1 =
α + βxn + γxn−k
A+Bxn + Cxn−k

where the parameters α, β, γ and A, B, C and the initial conditions
x−k, . . . , x−1, x0 are non-negative real numbers, and the denominator is nonzero.
We will study the local stability, the analysis of semi-cycles and the global
stability.

In chapter four we will study the special cases of this equation. Finally, in
the last chapter we will present the numerical part of our work.
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1 Solution of Difference Equations

1.1 Introduction to Difference Equation

A difference equation is a sequence of numbers that is generated recursively
using a rule to relate each number in the sequence to previous numbers in
the sequence. Which means that the term xn+1 is related to the terms
xn, xn−1, . . . , xn−k.
This relation expresses itself in the difference equation

xn+1 = f(xn) (1.1.1)

starting from a point x0, we may generate the sequence
x0, f(x0), f(f(x0)), f(f(f(x0))), . . . for more convenience, we use
the notation f 2(x0) = f(f(x0)), f 3(x0) = f(f(f(x0))), . . .
where, f 2(x0) = x2 is called the second iterate of x0 under f ,
more generally, fn(x0) = xn is called the nth iterate of x0 under f .

Observe that x(0) = f 0(x0) = x0

also, x(n+ 1) = fn+1(x0) = f [fn(x0)] = f(xn).
Now, let us consider the following difference equation
xn+1 = f(xn) = (x(n))2 for x0 = 2, n = 0, 1, 2, . . .
The iterated function will produce unbounded orbit {2, 4, 16, . . . }.

“ The positive orbit O(x0) of a point x0 is defined to be the set of points
O(x0) = {x0, f(x0), f 2(x0), . . . } ”
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1.2 Solution of First Order Linear Difference Equa-
tions

In this section we study a special case of Eq. (1.1.1),

xn+1 = axn, a 6= 0 (1.2.1)

with initial value x0 and we will give the details to find the solution and show
the behavior of this linear difference equation.

We can calculate the solution of x(n+ 1) = ax(n) recursively.
Set x(0) = x0.
x1 = x(1) = ax(0) = ax0

x2 = x(2) = ax(1) = a2x0

x3 = x(3) = ax(2) = a3x0
...
xn = x(n) = ax(n− 1) = anx0 .

This iterative procedure is an example of a discrete dynamical system.
We make the following results about the limiting behavior of the solution.

1. If a = 1, then limn→∞(xn) = x0.

2. If a = −1, limn→∞(xn) =

{
x0 , if n even

−x0 , if n odd

3. If | a |> 1, limn→∞(xn) =∞.

4. If | a |< 1, then limn→∞(xn) = 0.

The previous difference equation (Eq. (1.2.1)) is called a linear homogeneous
first order difference equation.
The associated nonhomogeneous equation is given by

xn+1 = axn + b, a 6= 0

where, a and b are real numbers defined for n ≥ 0.
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We get the unique solution of the nonhomogeneous equation by forward
iteration with initial condition x0.
x1 = ax0 + b.
x2 = ax1 + b = a(ax0 + b) + b = a2x0 + ab+ b.
x3 = ax2 + b = a(ax1 + b) + b = a3x0 + (a2 + a1 + 1)b
...
xn = axn−1 + b = a(an−1x0 + an−2b+ · · ·+ b) + b
= anx0 + (an−1 + an−2 + · · ·+ a+ 1)b.

But the series an−1 + an−2 + · · ·+ a+ 1 =
∑n−1

i=0 a
i.

And
n−1∑
i=0

ai =

{
n , if a = 1
1−an

1−a , if a 6= 1

Thus the solution of this difference equation is given by

xn =

{
x0 + nb , if a = 1

anx0 + (1−an

1−a )b , if a 6= 1

Definition 1.2.1. The order of a dynamical system of difference equation is
the difference between the largest and the smallest arguments n appearing in
it.

Example 1.2.1. xn+1 = axn + b, has order 1.

xn+4 + axn = bxn−2 has order 6.

xn+1 = 2xn + xn−k has order k+1.
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1.3 Theory of Linear Difference Equations

The normal form of a kth order nonhomogeneous linear difference equation
is given by

yn+k + pk−1yn+k−1 + · · ·+ p1yn+1 + p0yn = g(n) (1.3.1)

where pi(n) and g(n) are real-valued functions defined for n ≥ n0

and p0(n) 6= 0.

If g(n) = 0 then Eq. (1.3.1) is said to be a homogeneous equation.
So, the general form of the kth order homogeneous difference equation is

yn+k + pk−1yn+k−1 + · · ·+ p1yn+1 + p0yn = 0 (1.3.2)

Eq. (1.3.1) may be written in the form

yn+k = −pk−1yn+k−1 − · · ·+−p1yn+1 +−p0yn + g(n) (1.3.3)

Example 1.3.1. Consider the second order difference equation

y(n+ 2) + ny(n+ 1)− 3y(n) = n (1.3.4)

where y(1) = 0, y(2) = −1 ,
find the value of y(3), y(4) and y(5).

Solution:
First we rewrite Eq. (1.3.4) in the convenient form.

y(n+ 2) = n+−ny(n+ 1) + 3y(n)
for n = 1 we have y(3) = 1 + 3y(1)− 1y(2) = 2
for n = 2 y(4) = 2 + 3y(2)− 2y(3) = −5
for n = 3 y(5) = 3 + 3y(3)− 3y(4) = 24

in the same way we can find the other terms of the solutions of our difference
equation y(6), y(7), . . . .
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A sequence {y(n)}∞n0
or simply y(n) is said to be a solution of Eq. (1.3.1)

if it satisfies the equation.

Definition 1.3.1. [12] The functions f1(n), f2(n), . . . , fr(n) are said to
be linearly independent for n ≥ n0, if whenever

a1f1(n) + a2f2(n) + · · ·+ arfr(n) = 0

for all n ≥ n0, then we must have a1 = a2 = · · · = ar = 0.

Example 1.3.2. Show that the functions 5n, n5n and n25n are linearly in-
dependent for n ≥ 1.

Solution:
Suppose that for constants c1 , c2 and c3 we have
c15n + c2n5n + c3n

25n = 0 ∀ n ≥ 1,
5n(c1 + c2n+ c3n

2) = 0
⇒ c1 + c2n+ c3n

2 = 0 (dividing by 5n ).
This is impossible unless c3 = 0, since a second degree equation in n posses
at most two solutions.
similarly c2 = 0, whence c1 = 0, which establishes the linear independence of
our functions.

Definition 1.3.2. [12] A set of k linearly independent solutions of Eq. (1.3.2)
is called a fundamental set of solutions.

Theorem 1.3.1. [12] If p0(n) 6= 0, for all n ≥ n0, then the homoge-
neous difference equation (Eq. (1.3.2)) has a fundamental set of solutions
for n ≥ n0.

Definition 1.3.3. [12] Let {x1(n), x2(n), . . . , xr(n)} be a fundamental
set of solutions of Eq. (1.3.2) then the general solution of Eq. (1.3.2) is given
by

x(n) = Σr
i=1aixi(n)

for arbitrary constants ai.
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1.4 Solution of Linear Homogeneous Equations

Consider the Kth order difference equation ( Eq. (1.3.2))

yn+k + pk−1yn+k−1 + · · ·+ p1yn+1 + p0yn = 0

where the pi’s are constants and p0 6= 0. Suppose that yn = λn, where λ is
either a complex or real number. Substituting this value into Eq. (1.3.2), we
obtain

λk + pk−1λ
k + · · ·+ p0 = 0.

This equation is called the characteristic equation of Eq. (1.3.2) and its roots
{λ1, λ2, . . . , λk} are called the characteristic roots. Since p0 6= 0, so none of
the characteristic roots are equal to zero.
There are different cases of λ’s, so the general solution of Eq. (1.3.2) has
different situations depending on the cases of the characteristic roots.

Case1:
Suppose that the characteristic roots {λ1, λ2, . . . λk} are distinct,
and {λn1 , λn2 , . . . λnk} is a fundamental set of solutions so the general

solution is x(n) =
∑k

i=1 aiλ
n
i , ai are constant numbers.

Example 1.4.1. Consider the 2nd order homogeneous difference equation
x(n+2)-5x(n+1)+6x(n)=0, x(0)=0, x(1)=1
find the general solution of this difference equation.

Solution:
The characteristic equation is λ2 − 5λ+ 6 = 0.
Thus, the characteristic roots are λ1 = 2, λ2 = 3, and these roots give us the
general solution x(n) = c1(2)n + c2(3)n.
To find the constants c1, c2 we use the initial values
x(0) = c1 + c2 = 0
x(1) = 2c1 + 3c2 = 1
after solving the above system we obtain
c1 = −1 and c2 = 1.
Hence the general solution of the equation is given by
x(n) = −1(2)n + 1(3)n.
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Case2:
Suppose that the characteristic roots {λ1, λ2, . . . λk} all are equal,
so the general solution is given by

x(n) = λn(a0 + a1n+ · · ·+ ak−1n
k−1)

.

Example 1.4.2. Find the general solution of the following difference equa-
tion x(n+2)+8x(n+1)+16x(n)=0.

Solution:
The characteristic equation of this difference equation is given by
λ2 + 8λ+ 16 = 0 ⇒ (λ+ 4)2 = 0.
Thus the characteristic roots are λ1 = λ2 = −4.
So, the general solution is x(n) = (c1 + c2n)(−4)n.

Case3: Complex characteristic roots.
Assume that the homogeneous difference equation of 2nd order has
the complex characteristic roots λ1 = α + iβ, λ2 = α− iβ.
The general solution will be y(n) = a1(α + iβ)n + a2(α− iβ)n

In polar coordinate
α = r cos θ, β = r sin θ, r =

√
α2 + β2, θ = tan−1(β

α
)

So, x(n) = a1(r cos θ + ir sin θ)n + a2(r cos θ − ir sin θ)n

By using Moiver’s Theorem:
(r cos θ + ir sin θ)n = rn(cos(nθ) + i sin(nθ))
= rn((a1 + a2) cos(nθ) + i(a1 − a2) sin(nθ))
= rn(c1 cos(nθ) + c2 sin(nθ)) where a1 + a2 = c1 and i(a1 − a2) = c2.
Now let
cosω = c1√

c21+c22
and sinω = c2√

c21+c22

= rn
√
c2

1 + c2
2(cosω cosnθ + sinω sinnθ)

=rnA(cos(nθ − ω)) where, A =
√
c2

1 + c2
2

⇒ x(n) = rnA(cos(nθ − ω))

Example 1.4.3. Consider the 2nd order homogeneous difference equation
x(n+2)+16x(n)=0, write the general solution.

Solution:
The characteristic equation of the homogeneous equation is λ2+16 = 0 which
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gives the characteristic roots λ1 = 0 + 4i and λ2 = 0− 4i, thus r=4 and
θ = tan−1(β

α
) = π

2
.

So, the general solution is x(n) = 4n(c1 cos(nπ
2
) + c2 sin(nπ

2
))

1.5 Solution of Nonhomogeneous Linear Equations

In this section we focus our attention on solving the kth order linear
nonhomogeneous equations.

yn+k + pk−1yn+k−1 + · · ·+ p1yn+1 + p0yn = g(n). (1.5.1)

Where p0 6= 0, for all n ≥ n0, the sequence g(n) is called the external force,
or input of the system.

Example 1.5.1. Consider the nonhomogeneous difference equation

y(n+ 2)− y(n+ 1)− 6y(n) = 5(3)n (1.5.2)

(a) Show that y1(n) = n(3)n−1 and y2(n) = (n + 1)(3)n−1 are solutions of
the equation.

(b) Show that y(n) = cn(3)n−1 is not a solution of the equation, where c is
constant.

(c) Show that y(n) = y2(n)− y1(n) is not a solution of the equation.

Solution:

(a) To show that n(3n−1) is a solution, we substitute y(n) = n(3n−1) in the
equation (n+ 2)3n+1 − (n+ 1)3n − 6n3n−1 = 53n

3n[3n+ 6− n− 1− 2n] = 53n

⇒ [3n+ 6− n− 1− 2n] = 5.
So y1(n) = n(3)n−1 is a solution of the equation.
In the same way, we see that y2(n) = (n+ 1)(3)n−1 is a solution
of the equation.
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(b) To see if y(n) = cn(3)n−1 is not a solution of the equation, we substitute
y(n) = cn(3)n−1 in the equation.
c(n+ 2)(3)n+1 − c(n+ 1)3n − 6cn3n−1

= 3n[3cn+ 6c− cn− c− 2cn] = c53n.
So, y(n) = cn(3n−1) is not a solution.

(c) y(n) = y2(n)− y1(n) = (1 + n)3n−1 − n3n−1 = 3n−1

Substituting this into the equation yields, so that y(n) = (3)n−1 is not a
solution.

From the above example we conclude that neither the sum (difference) of two
solutions nor a multiple of a solution is a solution. The sum and the difference
of two solutions of the nonhomogeneous equation is actually a solution of the
associated homogeneous equation.

Theorem 1.5.1. [12] If y1(n) and y2(n) are solutions of Eq. (1.5.1) then
y(n) = y1(n)−y2(n) is a solution of the corresponding homogeneous equation
yn+k + pk−1yn+k−1 + · · ·+ p1yn+1 + p0yn = 0.

Theorem 1.5.2. [12] Any solution y(n)of Eq. (1.5.1) may be written as

y(n) = yp(n) +
k∑
i=1

aixi(n) .

Where
∑k

i=1 aixi(n) is the general solution of the homogeneous equation,
it is denoted by yc(n) the complementary solution of the non homogeneous
equations, and yp(n) (the particular solution) is a solution of the
nonhomogeneous equations.

The main idea of solving this nonhomogeneous equation (Eq. (1.5.1)) is
to find the particular solution yp(n), in addition to find yc(n).
There are some techniques to solve the nonhomogeneous equations, and the
following example show one of these techniques.

Example 1.5.2. Solve the difference equation

y(n+ 2) + 8y(n+ 1) + 7y(n) = n3n (1.5.3)
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Solution:
The characteristic roots of the homogeneous equation are λ1 = −1, λ2 = −7 .
So, yc(n) = c1(−1)n + c2(−7)n.
To find the particular solution, let yp(n) = 3n(a0 + a1n), substituting this
relation into Eq. (1.5.3)
We get,
n3n = 3n+2(a0 + a1(n+ 2)) + 83n+1(a0 + a1(n+ 1)) + 73n(a0 + a1(n))
n3n = 3n[9a0 + 9a1n+ 18a1 + 24a0 + 24a1 + 24a1n+ 7a0 + 7a1n]
hence,
40a0 + 42a1 = 0 and 40a1 = 1
⇒ a1 = 1

40
, a0 = −21

800
.

The particular solution is yp(n) = 3n[−21
800

+ ( 1
40

)n], and the general solution
is y(n) = yc(n) + yp(n)

So, y(n) = c1(−1)n + c2(−7)n + 3n[−21
800

+ ( 1
40

)n].

1.6 Solution of Nonlinear Difference Equations

In general, most nonlinear difference equations cannot be solved explicitly,
however some types of them can be solved by transforming nonlinear into
linear equations. In this section we study and solve a few types of nonlinear
difference equations.

Type I
Equations of Riccati type:

x(n+ 1)x(n) + p(n)x(n+ 1) + q(n)x(n) = 0 (1.6.1)

to solve this equation, let z(n) = 1
x(n)

we divide Eq. (1.6.1) by x(n+ 1)x(n), then substituting z(n) = 1
x(n)

to give us
1 + p(n)z(n) + q(n)z(n+ 1) = 0 (1.6.2)

Example 1.6.1. Solve the difference equation

y(n+ 1)y(n)− y(n+ 1) + y(n) = 0
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1− y(n+1)
y(n+1)y(n)

+ y(n)
y(n+1)y(n)

= 0

1− 1
y(n)

+ 1
y(n+1)

= 0

1− z(n) + z(n+ 1) = 0, ( as z(n) = 1
y(n)

)

z(n+ 1) = z(n)− 1

and this is first order difference equation.

Type II
Equations of general Riccati Type:

x(n+ 1) =
a(n)x(n) + b(n)

c(n)x(n) + d(n)
(1.6.3)

where c(n) 6= 0,
“ if c(n) = 0, then Eq. (1.6.3) will be linear difference equation ”
also, a(n)d(n)− b(n)c(n) 6= 0, ∀ n ≥ 0.

Let c(n)x(n) + d(n) = y(n+1)
y(n)

⇒ x(n) = y(n+1)
c(n)y(n)

− d(n)
c(n)

substitute x(n) in Eq. (1.6.3) to give us

y(n+1)
c(n+1)y(n+1)

− d(n+1)
c(n+1)

=
a(n)[

y(n+1)
c(n)y(n)

− d(n)
c(n)

]+b(n)

y(n+1)
y(n)

.

This equation simplifies to

y(n+ 2) + p1(n)y(n+ 1) + p2(n)y(n) = 0 (1.6.4)

where p1(n) = −c(n)d(n+1)+a(n)c(n+1)
c(n)

and p2(n) = (a(n)d(n)− b(n)c(n)) c(n+1)
c(n)

.

Example 1.6.2. Solve the difference equation

x(n+ 1) =
2x(n) + 4

x(n)− 1

Solution:
From the above equation we obtain, a= 2, b= 4, c= 1 and d= -1
as ad− bc = −6 6= 0 and c 6= 0 we will use the transformation
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x(n)− 1 = y(n+1)
y(n)

.
This transformation gives us the following linear difference equation
y(n+ 2)− 1y(n+ 1)− 6y(n) = 0
the characteristic roots of this equation are λ1 = 3, λ2 = −2
hence, y(n) = c1(3)n + c2(−2)n,

but, x(n) = y(n+1)
y(n)

+ 1 by substituting y(n) = c1(3)n + c2(−2)n

in the previous equation we get,

x(n) =
c1(3)n+1 + c2(−2)n+1

c1(3)n + c2(−2)n
+ 1.

Type III
Homogeneous difference equations of the type:

f

(
x(n+ 1)

x(n)
, n

)
= 0. (1.6.5)

Use the transformation z(n) = x(n+1)
x(n)

to transform Eq. (1.6.5) to a linear
equation, then we can solve it easily.

Example 1.6.3. Solve the difference equation

y2(n+ 1)− 2y(n+ 1)y(n)− 3y2(n) = 0 (1.6.6)

Solution:
Divide Eq. (1.6.6) by y2(n)
we get, (

y(n+ 1)

y(n)

)2

− 2

(
y(n+ 1)

y(n)

)
− 3 = 0 (1.6.7)

but y(n+1)
y(n)

= z(n), by substituting it in Eq. (1.6.7) we get the following
equation

z2(n)− 2z(n)− 3 = 0

⇒ (z(n)− 3)(z(n) + 1) = 0

Thus either, z(n)=0 or z(n)=-1
but y(n+1)=z(n)y(n)
So, y(n+1)=3 y(n) or y(n+1)=-y(n)
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Type IV
Consider the difference equation of the form

(y(n+ k))r1 (y(n+ k − 1))r2 . . . (y(n))rk+1 = g(n). (1.6.8)

Use the transformation z(n) = ln(y(n)) to convert Eq. (1.6.8) to

r1z(n+ k) + r2z(n+ k − 1) + · · ·+ rk+1z(n) = ln(g(n))

Example 1.6.4. Solve the difference equation

y(n+ 2) =
y3(n+ 1)

y2(n)
(1.6.9)

Solution:
By taking (ln) for both sides, Eq. (1.6.9) becomes
ln y(n+ 2) = 3 ln y(n+ 1)− 2 ln y(n) let ln y(n) = z(n).
we obtain,

z(n+ 2)− 3z(n+ 1) + 2z(n) = 0

the characteristic roots of this second order difference equation are λ1 = 2,
λ2 = 1 and the general solution is, z(n) = c1(2)n + c2(1)n

therefore,
y(n) = exp(z(n)) = exp(c1(2)n + c2).
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2 Behavior of Solutions for Difference Equa-

tions

2.1 The Equilibrium Points

Let us consider the difference equation

x(n+ 1) = f(xn) (2.1.1)

Definition 2.1.1. [11] A point x̄ is said to be an equilibrium point of
x(n+ 1) = f(xn) if it is a fixed point of f that is f(x̄) = x̄.

Example 2.1.1. Find the equilibrium points of the following
difference equation

x(n+ 1) = x(n)2 − 7x(n) + 7

Solution:
To find the equilibrium points let f(x̄) = x̄.
⇒ x̄ = x̄2 − 7x̄+ 7 ⇒ x̄2 − 8x̄+ 7 = 0
hence there are two equilibrium points x̄ = 7 and x̄ = 1

Example 2.1.2. Determine the fixed points for the equation

f(x) = 5− 6

x

Solution:
We can find the fixed points by letting f(x̄) = x̄ ⇒ x̄ = 5− 6

x̄

multiplying by x̄, we get x̄2 − 5x̄+ 6 = 0.
Then we conclude that x̄ = 3 and x̄ = 2 are the two fixed points.

Definition 2.1.2. [12] Let µ > 0, then the difference equation

x(n+ 1) = µx(n)[1− x(n)] (2.1.2)

is called the logistic difference equation and the function

Fµ(x) = µx(1− x)

is called logistic map.
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Example 2.1.3. Find the equilibrium points of Eq. (2.1.2).

Solution:
To find the equilibrium points of the logistic difference equation, we solve
the equation Fµ(x̄) = x̄ ⇒ x̄ = µx̄[1− x̄]
hence the two fixed points are 0 and µ−1

µ
.

Graphically
An equilibrium points is the x-coordinate of the point where the graph of f
intersects the diagonal line y = x.
The two following figures show the equilibrium points of the
previous functions.

Figure 2.1.0: The equilibrium points of x(n+ 1) = x(n)2 − 7x(n) + 7
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Figure 2.1.1: The fixed points of f(x) = 5− 6
x

2.2 Stability Theory

The main objective in the study of dynamical system is to analyze the be-
havior of its solutions near an equilibrium point, this study constitutes the
Stability Theory.

Definition 2.2.1. [11] Let x̄ be an equilibrium point of Eq. (2.1.1) and as-
sume that I is some interval of real numbers, where x̄ ∈ I The equilibrium
point x̄ is called:

(i) Locally stable “ or stable ” if for every ε > 0, there exists δ > 0 such
that for x0 ∈ I with | x0 − x̄ |< δ we have | xn − x̄ |<∈, for all n ≥ 0.

(ii) Locally asymptotically stable “ or asymptotically stable ” if it is locally
stable, and if there exists γ > 0 such that for x0 ∈ I with | x0 − x̄ |< γ
we have

lim
n→∞

xn = x̄
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(iii) A global attractor if for x0 ∈ I, we have

lim
n→∞

x(n) = x̄

(iv) A global asymptotically stable “ or globally stable ” if it is locally stable
and it is a global attractor.

(v) unstable if it is not stable.

(vi) A repeller “ or a source ” if there exists r > 0 such that for x0 ∈ I with
| x0 − x̄ |< r, there exists N ≥ 1 such that | xN − x̄ |> r.
Clearly a source is an unstable equilibrium point.

2.3 Criterion For The Asymptotic Stability

In this section, we will state some useful criteria for the asymptotic stability
of the equilibrium point.

Theorem 2.3.1. [12] Let x̄ be an equilibrium point of the difference equation

x(n+ 1) = f(xn) (2.3.1)

where f is continuously differentiable at x̄. Then the following statements are
true:

(1) If | f ′(x̄) |< 1, then x̄ is asymptotically stable.

(2) If | f ′(x̄) |> 1, then x̄ is unstable.

Example 2.3.1. Consider the difference equation

x(n+ 1) = x(n)2 − 7x(n) + 7

as we have seen in section (2.1 ) this equation has two equilibrium points
x̄ = 7 and x̄ = 1. The equilibrium point x̄ = 7 is unstable since
f ′(7) = 2(7)− 7 = 7 > 1 so, x̄ = 7 is unstable as | f ′(x̄) |> 1,
also, the equilibrium point x̄ = 1 is unstable, since
| f ′(1) |=| 2(1)− 7 |=| −5 |= 5 > 1.
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Example 2.3.2. Consider the first order difference equation

x(n+ 1) = x(n)2 − x(n) + 1.

We can easily show that, the only equilibrium point of this equation is x̄ = 1,
but, when x̄ = 1 then | f ′(1) |=| 2(1) − 1 |= 1, and this case will discuss in
the following theorem.

Theorem 2.3.2. [12] Suppose that for an equilibrium point x̄ of Eq. (2.3.1),
f ′(x̄) = 1 then the following statements are true:

(i) If f ′′(x̄) 6= 0, then x̄ is unstable.

(ii) If f ′′(x̄) = 0, and f ′′′(x̄) > 0 then x̄ is unstable.

(iii) If f ′′(x̄) = 0, and f ′′′(x̄) < 0 then x̄ is asymptotically stable.

Hence, the equilibrium point x̄ = 1 from the previous example is unstable
as f ′′(1) = 2 6= 0.

The preceding Theorem 2.3.2 applied when f ′(x̄) = 1, and we will use
the following theorem in case f ′(x̄) = −1.
But before stating the theorem, we need to introduce the notation of Schwarzian
derivative of a function f , let f be a derivative function then the Schwarzian
Sf is given by:

Sf(x̄) =
f ′′′(x̄)

f ′(x̄)
− 3

2

[
f ′′(x̄)

f ′(x̄)

]2

and when f ′(x̄) = −1
then

Sf(x̄) = −f ′′′(x̄)− 3

2
[f ′′(x̄)]

2

Theorem 2.3.3. [12] Suppose that for the equilibrium point x̄ of Eq. (2.3.1)
f ′(x̄) = −1, then the following statements hold:

(i) If Sf(x̄) > 0, then x̄ is unstable.

(ii) If Sf(x̄) < 0, then x̄ is asymptotically stable.
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Example 2.3.3. Consider the difference equation

x(n+ 1) = x(n)2 + 3x(n)

determine the stability of the equilibrium points.
Solution:
This equation has two equilibrium points 0 and -2.
By applying Theorem (2.3.1), we conclude that 0 is unstable as
f ′(0) = 2(0) + 3 = 3 > 1.
But at x̄ = −2, ⇒ f ′(−2) = −1, so we use Theorem (2.3.3) and we obtain
Sf(−2) = −f ′′′(−2)− 3

2
[f ′′(−2)]2 = 0− 3

2
(4) = −6 < 0.

Thus the equilibrium point (-2) is asymptotically stable as Sf(−2) < 0.

Remark:
3 Theorem (2.3.2) fails if for a fixed point x̄, f ′(x̄) = 1 and
f ′′(x̄) = f ′′′(x̄) = 0.
3 Theorem (2.3.3) fails if f ′(x̄) = −1 and Sf(x̄) = 0.

Example 2.3.4. f(x) = −x+ 2x2 − 4x3 for fixed point x̄ = 0,
f ′(x̄) = −1 and Sf(x̄) = 0, so we cannot use Theorem (2.3.3).
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2.4 Periodic Points and Cycles

One of the most important notation in the study of dynamical systems is to
study its periodicity .

Definition 2.4.1. [12] Let b be in the domain of f, then

1. b is called a periodic point of f if for some positive integer k, fk(b) = b.
A point is k-periodic if it is a fixed point of fk, that is b is an equilibrium
point of the difference equation x(n+ 1) = fk(x(n)).
The periodic orbit of b,O(b)={b, f(b), f 2(b), . . . , fk−1(b)} is called a k-
cycle.

2. b is called eventually k-periodic if for some positive integer m,
fm+k(b) = fm(b).

Graphically:
We can find the k-periodic point of a difference equation, by finding the
x- coordinate of the point where the graph of fk meets the diagonal line
y = x.

Example 2.4.1. Consider the first order difference equation
x(n+ 1) = 2x2(n), find 2-periodic points.
Solution:
Let, f(x(n)) = x(n+ 1), so f(x) = 2x2,
and as f 2(x) = f(f(x)), then f(2x2) = 2(2x2)2 = 8x4.
By letting f 2(x) = x we see that the 2-periodic points of our equation
are 0 and 1

2
.

We can also plot f 2(x) to see from the figure the 2-periodic points, by plotting
the graph f 2(x) and see where it meets the diagonal line y = x.
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Figure 2.4.1: The 2-periodic points of x(n+ 1) = 2x2(n)

Definition 2.4.2. [12] Let b be a k-periodic point of f , then b is

(1) stable if it is a stable fixed point of fk.

(2) asymptotically stable if it is an asymptotically stable fixed point of fk.

(3) unstable if it is an unstable fixed point of fk.

Theorem 2.4.1. [12] Let O(b)={b = x(0), x(1), . . . , x(k − 1)}
be a k-cycle of a continuously differentiable function f. Then the following
statements hold:

(i) The k-cycle O(b)is asymptotically stable if
| f ′(x(0))f ′(x(1)) . . . f ′(x(k − 1)) |< 1.

(ii) The k-cycle O(b) is unstable if | f ′(x(0))f ′(x(1)) . . . f ′(x(k − 1)) |> 1.
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2.5 The Stair Step Diagrams

The stair step diagrams or (cobweb diagram) is a graphical method, for ana-
lyzing the stability of equilibrium points for the equation f(x(n)) = x(n+1).
We draw a graph of f in the (x(n), x(n + 1)) plane, and the y = x on the
same plane.
We start at an initial point x0, then we draw a vertical line through x0 until
we intersect the graph of f at (x0, x1). Next we draw a horizontal line from
(x0, x(1)) to meet the diagonal line y = x at the point (x(1), x(1)), then we
draw a vertical line from the point (x(1), x(1)) to intersect the graph of f at
the point (x(1), x(2)), and by continuing this process we may find x(n),
for all n > 0.

Now, we will draw the cobweb diagram around the equilibrium point x̄ = 0
by taking two initial points x0 = .6 and x0 = −.6, for the function
x(n+ 1) = 2x3(n).
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Figure 2.5.1: Stability of x̄ = 0 of x(n+ 1) = 2x3(n)

As we can see from this figure, the equilibrium point x̄ = 0 is asymptoti-
cally stable.

2.6 The Limiting Behavior Of The Solutions

To simplify our exposition let us take the second order difference equation

y(n+ 2) + p1y(n+ 1) + p2y(n) = 0 (2.6.1)

and we study the behavior of its solutions.
Assume that λ1 and λ2 are the characteristic roots of the equation. Then
we have the following cases.

(a) Case one: Repeated Roots λ1 = λ2 = λ
The general solution of Eq. (2.6.1) is given by (a1 + a2n)λn.
If | λ |≤ 1 then the solution y(n) converges to zero.
If | λ |≥ 1, then the solution y(n) diverges either monotonically if
λ ≥ 1 or by oscillating if λ ≤ −1.
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(b) Case two: Distinct Roots
Suppose that λ1 and λ2 are two real distinct roots, then the general
solution of Eq. (2.6.1), as we have seen is given by
y(n) = a1λ

n
1 + a2λ

n
2 .

If | λ1 |>| λ2 |, we can write y(n) = λn1

[
a1 + a2(λ2

λ1
)n
]

since as | λ2

λ1
|< 1 then limn−→∞

(
λ2

λ1

)n
= 0 ,

limn→∞ y(n) = limn→∞ a1λ
n
1 , there are six different situations

depending on the value of λ1.

1. λ1 > 1, The sequence {a1λ
n
1} diverges to ∞ “ unstable system ”.

2. λ1 = 1 , The sequence {a1λ
n
1} is a constant sequence.

3. 0 < λ1 < 1, The sequence {a1λ
n
1} converge to zero “ stable system ”.

4. −1 < λ1 < 0 The sequence {a1λ
n
1} is oscillating around zero, and

converging to zero “ stable system ”.

5. λ1 = −1 The sequence is oscillating between two values a1 and −a1.

6. λ1 < −1, The sequence {a1λ
n
1} is oscillating but increasing in magni-

tude “ unstable system ”.

(c) Case three: Two Complex Roots
The last case that we will study here, is when the two roots are complex
numbers.
λ1 = α + iβ and λ2 = α − iβ the general solution of this case as
we have seen is y(n) = Arn cos(nθ − ω) where, r =

√
α2 + β2 and

θ = tan−1(β
α

).
The solution y(n) oscillates since the cosine function oscillates, and this
oscillation has three different cases depending on the location of the con-
jugate characteristic roots:

1. r = 1, here λ1 and λ2 = λ̄1 lie on the unit circle in this case y(n)
is oscillating but constant in magnitude.

2. r > 1, then λ1, λ2 = λ̄1 are outside the unit circle, hence y(n) is
oscillating but increasing in magnitude “ unstable system ”.
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3. r < 1 then λ1 and λ2 = λ̄1 lie inside the unit disk, the solution y(n)
oscillates but converges to zero as n −→∞ “ stable system ”.

We summarize the previous three cases in the following theorem:

Theorem 2.6.1. [12] The following statements hold.

(i) All solutions of Eq. (2.6.1) oscillate about zero if and only if
the characteristic equation has no positive real roots.

(ii) All solutions of Eq. (2.6.1) converge to zero if and only if
max{| λ1 | | λ2 |} < 1.

Before we state the next theorem, let us consider the second order
nonhomogeneous difference equation

y(n+ 2) + p1y(n+ 1) + p2y(n) = µ (2.6.2)

where µ is nonzero constant.
The equilibrium point of this equation is ȳ = µ

1+p1+p0
.

So the general solution of Eq. (2.6.2) when yp(n) = ȳ is given by
y(n) = ȳ + yc(n).

Now, we can conclude the following theorem.
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Theorem 2.6.2. [12] The following statements hold:

(i) All solutions of the nonhomogeneous equation (Eq. (2.6.2)) oscillate
about the equilibrium solution ȳ if and only if none of the characteristic
roots of the homogeneous equation (Eq. (2.6.1)) is a positive real num-
ber.

(ii) All solutions of Eq. (2.6.2) converge to ȳ as n −→∞ if and only if
max {| λ1 |, | λ2 |} < 1 where λ1 and λ2 are the characteristic roots
of the homogeneous equation (Eq. (2.6.1)).

The previous two theorems give necessary and sufficient conditions under
which a second order equation is locally asymptotically stable.
But, the following results provide us with explicit criteria for stability based
on the values of the coefficients p1 and p2 of Eq. (2.6.1) and Eq. (2.6.2).

Theorem 2.6.3. [12] The conditions
1 + p1 + p2 > 0, 1− p1 + p2 > 0, 1− p2 > 0
are necessary and sufficient for the equilibrium point of Eq. (2.6.1) and
Eq. (2.6.2) to be asymptotically stable “ all solutions converge to ȳ ”.

Theorem 2.6.4. 1The condition

| p1 |< 1 + p2 < 2

is necessary and sufficient for the asymptotically stability of the zero solution
of the equation

y(n+ 2) + p1y(n+ 1) + p2y(n) = 0

Theorem 2.6.5. [12] Consider the second order difference equation

y(n+ 2)− p1y(n+ 1)− p2y(n) = 0.

Then all solutions of the equation converge to zero if | p1 | + | p2 |< 1.

1See Question 12 in [12], P.97
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3 Dynamics of xn+1 =
α+βxn+γxn−k
A+Bxn+Cxn−k

3.1 Introduction and Preliminaries

Our goal in this chapter is to study the dynamics of the higher order nonlinear
difference equation

xn+1 =
α + βxn + γxn−k
A+Bxn + Cxn−k

, n = 0, 1, 2, . . . (3.1.1)

where the initial conditions x−k, . . . , x−1, x0 are non-negative real numbers,
k ∈ {1, 2, . . . }, and all the parameters α, β, γ,A, B and C are non-negative
real numbers, and the denominator is nonzero.

In 2002, Ladas and Kulenovic in [16] studied the special case of our dif-
ference equation, when k = 1

xn+1 =
α + βxn + γxn−1

A+Bxn + Cxn−1

, n = 0, 1, 2, . . .

where the parameters α, β, γ, A, B and C are non-negative real numbers,
and the initial conditions x−1, x0 are non-negative real numbers, and the de-
nominator is nonzero.

They investigated the local stability, semi-cycles, periodicity, and the in-
variant intervals.

Li and Sun in [24] studied the dynamical characteristics, such as the global
asymptotic stability, the invariant interval, the periodic and oscillatory char-
acters of all positive solutions of the equation

xn+1 =
pxn + xn−k
q + xn−k

, n = 0, 1, 2, . . .

where the initial conditions x−k, . . . , x−1, x0 are non-negative real numbers,
k ∈ {1, 2, . . . }, and the parameters p and q are non-negative real num-
bers, and the denominator is nonzero.



3 DYNAMICS OF XN+1 = α+βXN +γXN−K

A+BXN +CXN−K
30

Devault et al. in [8] investigated the periodic character and the global
stability of the solutions of the difference equation

xn+1 =
p+ xn−k
qxn + xn−k

, n = 0, 1, 2, . . .

where the initial conditions x−k, . . . , x−1, x0 are non-negative real numbers,
k ∈ {1, 2, . . . }, and all the parameters p and q are non-negative real num-
bers, and the denominator is nonzero.

Dehghan and Sebdani in [7] investigated the global stability, the bound-
edness of positive solutions and the character of semi-cycles of the difference
equation

xn+1 =
p+ qxn
1 + xn−k

, n = 0, 1, 2, . . .

where the initial conditions x−k, . . . , x−1, x0 are non-negative real numbers,
k ∈ {1, 2, . . . }, and all the parameters p and q are non-negative real num-
bers, and the denominator is nonzero.

Also, Dehghan and Douraki in [5] investigated the global stability, invariant
intervals and the boundedness of positive solutions of the difference equation

xn+1 =
p+ xn

xn + qxn−k
, n = 0, 1, 2, . . .

where the initial conditions x−k, . . . , x−1, x0 are non-negative real numbers, k ∈
{1, 2, . . . }, and all the parameters p and q are non-negative real numbers, and
the denominator is nonzero.

S.Abu Baha in [1] studied the local and global stability, invariant intervals,
analysis of semi-cycles and the periodic character of solution of the difference
equation

xn+1 =
βxn + γxn−k
Bxn + Cxn−k

, n = 0, 1, 2, . . .

where the initial conditions x−k, . . . , x−1, x0 are non-negative real numbers,
k ∈ {1, 2, . . . }, and all the parameters β, γ, B and C are non-negative real
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numbers, and the denominator is nonzero.

Farhat and Alaweneh studied independently in [13] and [3] the difference
equation

xn+1 =
α + βxn + γxn−k
Bxn + Cxn−k

, n = 0, 1, 2, . . .

where the initial conditions x−k, . . . , x−1, x0 are non-negative real numbers,
k ∈ {1, 2, . . . }, and all the parameters α, β, γ, B and C are non-negative
real numbers, and the denominator is nonzero.
They studied the periodic character of the positive solution, the invariant
intervals, the oscillation and the global stability of all solutions of the above
difference equation.

Here, we present the basic definitions and theorems, and some results which
will be useful in our investigation of the behavior of solution of Eq. (3.1.1),
in this chapter.

Definition 3.1.1. [19] The equilibrium point ȳ of the equation

yn+1 = f(yn, yn−1, . . . , yn−k), n = 0, 1, . . . (3.1.2)

is the point that satisfies the condition ȳ = f(ȳ, ȳ, . . . , ȳ).

Definition 3.1.2. [7] Let ȳ be an equilibrium point of equation Eq. (3.1.2),
then the equilibrium point ȳ is called:

1- Locally stable “ or stable ” if for every ε > 0 there exist δ > 0 such that
for all y−k, . . . , y−1, y0 ∈ I with

∑
i=−k | yi− ȳ |< δ we have | yn− ȳ |< ε

for all n ≥ −k.

2- Locally asymptotically stable“ asymptotically stable ” if it is locally stable
and if there exist γ > 0 such that for all y−k, . . . , y−1, y0 ∈ I with

∑
i=−k |

yi − ȳ |< γ, we have
lim
n−→∞

yn = ȳ.

3- Global attractor if for every y−k, . . . , y−1, y0 ∈ I we have

lim
n−→∞

yn = ȳ.
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4- Globally asymptotically stable if it is locally stable and global attractor.

5- Unstable if it is not stable.

6- A source or a repeller, if there exists r > 0 such that for all
y−k, . . . , y−1, y0 ∈ I with

∑
i=−k | yi − ȳ |< γ there exists N ≥ 1 such that

| yN − ȳ |≥ r.

The linearized equation associated with Eq. (3.1.2) about the equilibrium
point ȳ is

yn+1 =
∑
i=−k

∂f

∂ui
(ȳ, . . . , ȳ)yn−i n = 0, 1, . . . (3.1.3)

and its characteristic equation

λk+1 =
∑
i=−k

∂f

∂ui
(ȳ, . . . , ȳ)λk−i. (3.1.4)
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3.2 Local Stability

In this section we investigate the locally asymptotic stability of the unique
positive equilibrium point of Eq. (3.1.1).

But before investigating the local stability of the positive equilibrium point
we utilize the change of variables, let xn = β

B
yn then

β

B
yn+1 =

α + β β
B
yn + γ β

B
yn−k

A+B β
B
yn + C β

B
yn−k

=⇒
βyn =

αB + β2yn + γβyn−k

A+ βyn + Cβ
B
yn−k

then

yn+1 =

αB
β

+ βyn + γyn−k

A+ βyn + Cβ
B
yn−k

hence,

yn+1 =

αB
β2 + yn + γ

β
yn−k

A
β

+ yn + C
B
yn−k

.

Set p = αB
β2 , q = A

β
, L = γ

β
and d = C

B
.

So we get,

yn+1 =
p+ yn + Lyn−k
q + yn + dyn−k

. (3.2.1)

Let

f(x, y) =
p+ x+ Ly

q + x+ dy

assume that

a =
∂f

∂x
(ȳ, ȳ) and b =

∂f

∂y
(ȳ, ȳ)

∂f

∂x
=

(q + x+ dy)− (p+ x+ Ly)

(q + x+ dy)2
=

(q − p) + y(d− L)

(q + x+ dy)2
.
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So,

a =
∂f

∂x
(ȳ, ȳ) =

(q − p) + ȳ(d− L)

(q + ȳ + dȳ)2

and

∂f

∂y
=
L(q + x+ dy)− d(p+ x+ Ly)

(q + x+ dy)2
=

(Lq − dp) + x(L− d)

(q + x+ dy)2
.

So,

b =
∂f

∂x
(ȳ, ȳ) =

(Lq − dp) + ȳ(L− d)

(q + ȳ + dȳ)2
.

We notice that the partial derivatives of f(x, y) are evaluated at the equi-
librium point ȳ, so we will find the equilibrium points of Eq. (3.2.1).
Let f(ȳ, ȳ) = ȳ we get,

ȳ =
p+ ȳ + Lȳ

q + ȳ + dȳ
=⇒ p+ ȳ + Lȳ = qȳ + ȳ2 + dȳ2

(1 + d)ȳ2 = p− (q − L− 1)ȳ (3.2.2)

we solve Eq. (3.2.2) and find ȳ

ȳ =
(L+ 1− q)∓

√
(q − L− 1)2 + 4p(1 + d)

2(d+ 1)
.

The only positive equilibrium point is

ȳ =
(L+ 1− q) +

√
(q − L− 1)2 + 4p(1 + d)

2(d+ 1)
.

For investigation of locally asymptotic stability of the unique positive equi-
librium point of Eq. (3.2.1) we need the following theorems:

Theorem 3.2.1. [17] “ Linearized stability ”

1. If all the roots of Eq. (3.1.4) lie in the open unite disk | λ |< 1, then the
equilibrium point ȳ of Eq. (3.1.2) is locally stable.
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2. If at least one roots of Eq. (3.1.4) has absolute value greater than one,
then the equilibrium point ȳ of Eq. (3.1.2) is unstable.

An equilibrium point ȳ of Eq. (3.1.2) is a saddle point if there exists a
root of Eq. (3.1.4) with absolute value less than one and another root of
Eq. (3.1.4)with absolute value greater than one.
An equilibrium point ȳ of Eq. (3.1.2) is called a repeller if all roots of
Eq. (3.1.4) have absolute value greater than one.

Theorem 3.2.2. [24] Assume that a, b ∈ R and K ∈ {1, 2, . . . } then

| a | + | b |< 1 (3.2.3)

is a sufficient condition for the asymptotic stability of the difference equation

yn+1 = ayn + byn−k, n = 0, 1, . . . (3.2.4)

Suppose in addition that one of the following two cases hold.

(a) K odd and b < 0.

(b) K even and ab < 0.

Then Eq. (3.2.3) is also a necessary condition for the asymptotically stable
of Eq. (3.2.4).

Theorem 3.2.3. [17] Assume that a, b ∈ R. Then | a |< b + 1 < 2 is
a necessary and sufficient condition for the asymptotically stability of the
difference equation

yn+1 + ayn + byn−k = 0, n = 0, 1, . . .

Theorem 3.2.4. [20] The difference equation

yn+1 − byn + byn−k = 0, n = 0, 1, . . .

is asymptotically stable iff 0 <| b |< 1
2

cos( kπ
k+2

).
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Note that the linearized equation associated with Eq. (3.2.1) about the
equilibrium point ȳ is

zn+1 − azn − bzn−k = 0.

Substitute the values of a and b last in the equation to get,

zn+1 −
(q − p) + ȳ(d− L)

(q + ȳ + dȳ)2
zn −

(Lq − dp) + (L− d)ȳ

(q + ȳ + dȳ)2
zn−k = 0. (3.2.5)

And its characteristic equation is

λk+1 − (q − p) + ȳ(d− L)

(q + ȳ + dȳ)2
λk − (Lq − dp) + (L− d)ȳ

(q + ȳ + dȳ)2
= 0.

The results presented here and Theorem (3.2.2) give the following theorem

Theorem 3.2.5. The unique equilibrium point ȳ of Eq. (3.2.1)is locally
asymptotically stable in the following cases:

1. d > L, there are two cases:

(a) (d− L)ȳ < (p− q)
(b) (d− L)ȳ > (p− q)

2. d < L, then we have two cases:

(a) (d− L)ȳ < (p− q)
(b) (d− L)ȳ > (p− q)
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Proof. We use Theorem (3.2.2),
from the linearized equation we have

a =
ȳ(d− L) + (q − p)

(q + ȳ + dȳ)2
and b =

ȳ(L− d) + (Lq − dp)
(q + ȳ + dȳ)2

1. when d > L, there are two cases:

(a) (d− L)ȳ < (p− q) such that p > q
so we have,

| a |= −ȳ(d− L) + (p− q)
(q + ȳ + dȳ)2

, | b |= ȳ(d− L) + (dp− Lq)
(q + ȳ + dȳ)2

(3.2.6)

we will prove that, | a | + | b |< 1.

Substituting the value of a and b,

−ȳ(d− L) + (p− q) + ȳ(d− L) + (dp− Lq)
(q + ȳ + dȳ)2

< 1.

By multiplying both side with (q + ȳ + dȳ)2 we get,

−ȳ(d− L) + p− q + ȳ(d− L) + (dp− Lq) < (q + ȳ + dȳ)2

=⇒ p− q + dp− Lq < (q + ȳ + dȳ)2.

But

(q + ȳ + dȳ)2 = (q + (d+ 1)ȳ)2 = q2 + (d+ 1)2ȳ2 + 2qȳ(1 + d)

and from Eq. (3.2.2) we get,

ȳ2 =
p− (q − L− 1)ȳ

(1 + d)
.

So,

(q + ȳ + dȳ)2 = q2 + (d+ 1)2p− (q − L− 1)ȳ

(1 + d)
+ 2qȳ(1 + d)

= q2 + qȳ + qdȳ + p+ ȳ + Lȳ + dp+ dȳ + dLȳ.
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Now,
p− q + dp− Lq < (q + ȳ + dȳ)2

=⇒ p− q + dp− Lq < q2 + qȳ + qdȳ + p+ ȳ + Lȳ + dp+ dȳ + dLȳ

then,
0 < q2 + qȳ + qdȳ + p+ ȳ + Lȳ + dp+ dȳ + dLȳ.

So, the right hand side is strictly greater than zero.

(b) (d− L)ȳ > (p− q) and we have two cases:

i) p > q

| a |= ȳ(d− L)− (p− q)
(q + ȳ + dȳ)2

, | b |= ȳ(d− L) + (dp− Lq)
(q + ȳ + dȳ)2

(3.2.7)

ȳ(d− L)− (p− q) + ȳ(d− L) + (dp− Lq)
(q + ȳ + dȳ)2

< 1.

So,

q−p+2ȳd−2ȳL+dp−Lq < q2+qȳ+qdȳ+p+ȳ+Lȳ+dp+dȳ+dLȳ

cancelling dȳ, dp from both sides,
we obtain,

ȳd+ q < q2 + qȳ + qdȳ + 2p+ ȳ + 3Lȳ + dLȳ

then,

0 < (q2 − q) + qȳ + qdȳ + 2p+ ȳ + 3Lȳ + dȳ(L− 1).

This is true only if q > 1 and L ≥ 1.

ii) p < q. When p < q and d > L then (dp−Lq) > 0 or (dp−Lq) <
0 if (dp− Lq) > 0 then

| a |= ȳ(d− L)− (p− q)
(q + ȳ + dȳ)2

, | b |= ȳ(d− L) + (dp− Lq)
(q + ȳ + dȳ)2

and this case is the same as (3.2.7), so | a | + | b |< 1.
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If (dp− Lq) < 0 and | (d− L)ȳ |<| dp− Lq |
then we have

| a |= ȳ(d− L)− (p− q)
(q + ȳ + dȳ)2

, | b |= −ȳ(d− L)− (dp− Lq)
(q + ȳ + dȳ)2

(3.2.8)
now we prove that, | a | + | b |< 1
so,

−ȳ(d− L)− p+ q + ȳ(d− L)− dp+ Lq < (q + ȳ + dȳ)2

hence,

−p+ q − dp+ Lq < q2 + qȳ + qdȳ + p+ ȳ + Lȳ + dp+ dȳ + dLȳ

0 < (q2 − q) + 2p+ 2dp+ qȳ + qdȳ + ȳ + Lȳ + dȳ + dLȳ − Lq

then we have,

0 < (q2 − q) + 2p+ 2dp+ qȳ + ȳ + Lȳ + dȳ + dLȳ + q(dȳ − L).

and this is true only if, dȳ > L and q > 1.

2. d < L, we have two cases

(a) (d− L)ȳ < (p− q) and there are two subcases

i) p < q

| a |= −ȳ(d− L) + (p− q)
(q + ȳ + dȳ)2

, | b |= −ȳ(d− L)− (dp− Lq)
(q + ȳ + dȳ)2

.

(3.2.9)
We will prove that | a | + | b |< 1
since,

−ȳ(d− L) + (p− q) +−ȳ(d− L)− (dp− Lq) < (q + ȳ + dȳ)2

hence,

−2ȳd+2Lȳ+p−q−dp+Lq < q2+qȳ+qdȳ+p+ȳ+Lȳ+dp+dȳ+dLȳ
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=⇒ 0 < (q2 + q) + qȳ + qdȳ + ȳ − Lȳ + 2dp+ 3dȳ + dLȳ − Lq

thus

0 < q(q + 1 + ȳ + dȳ − L) + ȳ + 2dp+ 3dȳ + L(dȳ − ȳ).

So the right hand side strictly greater than zero.

ii) p > q then (dp− Lq) > 0 or (dp− Lq) < 0

if (dp− Lq) > 0 and | dp− Lq |>| ȳ(d− L) |

then

| a |= −ȳ(d− L) + (p− q)
(q + ȳ + dȳ)2

, | b |= ȳ(d− L) + (dp− Lq)
(q + ȳ + dȳ)2

(3.2.10)
and this case is the same as (3.2.6) when d > L,
so we have seen that | a | + | b |< 1

when (dp − Lq) > 0 such that | (dp − Lq) |<| ȳ(d − L) | or
(dp− Lq) < 0,
then we have

| a |= −ȳ(d− L) + (p− q)
(q + ȳ + dȳ)2

, | b |= −ȳ(d− L)− (dp− Lq)
(q + ȳ + dȳ)2

and this case is the same as (3.2.9), when d < L,
so, | a | + | b |< 1.

(b) (d− L)ȳ > (p− q) such that p < q
then

| a |= ȳ(d− L)− (p− q)
(q + ȳ + dȳ)2

, | b |= −ȳ(d− L)− (dp− Lq)
(q + ȳ + dȳ)2

also, this case is the same as Eq. (3.2.8), so we have seen that

| a | + | b |< 1.
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The proof is complete.

Now we will give the following definition which will be the key concept
here.

Definition 3.2.1. [5] An Invariant Interval for the difference equation

yn+1 = f(yn, yn−1, yn−2, . . . , yn−k), n = 0, 1, . . . (3.2.11)

is an interval I with the property that if k consecutive terms of the solution
fall in I, then all subsequent terms of the solution also belong to I. In other
words I is an invariant interval for Eq. (3.2.11) if yN−k, . . . , yN−1, yN ∈ I for
some N ≥ 0 then yn ∈ I, for every n > N.

Theorem 3.2.6. Let {yn}∞n=−k be a solution of Eq. (3.2.1) then the following
are true:

1. Suppose that L < d, p < q and dp > Lq and assume that for some

N ≥ 0 yN−k, . . . , yN−1, yN ∈
[
p+L
q+d

, 1
]

then yn ∈
[
p+L
q+d

, 1
]
, for all n > N

2. Suppose that L > d, p > q, dp > Lq, and | Lq − dp |>| x(L − d) |
and assume that for some N ≥ 0 yN−k, . . . , yN−1, yN ∈

[
1, p+L

q+d

]
then

yn ∈
[
1, p+L

q+d

]
, for all n > N

Proof. Let {yn}∞n=−k be a solution of Eq. (3.2.1)
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1. Assume that L < d, p < q and dp > Lq then we can easily show that
f(x, y) is increasing in x and decreasing in y, by using partial derivative 2

∂f(x, y)

∂x
=

(q + dy)− (p+ Ly)

(q + x+ dy)2

when L < d and p < q then ∂f(x,y)
∂x

> 0, so f(x, y) is increasing in x.

Also,
∂f(x, y)

∂y
=
L(q + x)− d(p+ x)

(q + x+ dy)2

when L < d and dp > Lq then ∂f(x,y)
∂y

< 0, and so f(x, y) is decreasing in
y.

Now, for some N > 0, and p+L
q+d
≤ yN−k, . . . , yN−1, yN ≤ 1, we can say

that the following step is true as “ p < q and L < d ”

yN+1 =
p+ yN + LyN−k
q + yN + dyN−k

≤ q + yN + LyN−k
q + yN + dyN−k

≤ q + yN + dyN−k
q + yN + dyN−k

= 1.

So,
yN+1 ≤ 1.

And to show that yN+1 ≥ p+L
q+d

we will substitute yN−k = 1 and

yN = p+L
q+d

in the following function,

yN+1 =
p+ yN + LyN−k
q + yN + dyN−k

and since yN+1 is increasing in yN and decreasing in yN−k, we get the
following,

yN+1 =
p+ yN + LyN−k
q + yN + dyN−k

≥
p+ p+L

q+d
+ L(1)

q + p+L
q+d

+ d(1)
=

(p+ L)
[
1 + 1

q+d

]
(q + d)

[
1 + 1

q+d
p+L
q+d

]
2See Theorem 4.2.2 in [18], P.144
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but p+L
q+d

< 1.

So,

(p+ L)
[
1 + 1

q+d

]
(q + d)

[
1 + 1

q+d
p+L
q+d

] > p+ L

q + d

[
1 + 1

q+d

1 + 1
q+d

]
=
p+ L

q + d

then

yN+1 ≥
p+ L

q + d

By Mathematical Induction we can prove that yn ∈
[
p+L
q+d

, 1
]
, for all

n > N . We proved that yN+1 ∈
[
p+L
q+d

, 1
]
, so we just will show that if

yN+m−1 ∈
[
p+L
q+d

, 1
]

then yN+m ∈
[
p+L
q+d

, 1
]
.

yN+m =
p+ yN+m−1 + LyN+m−(k+1)

q + yN+m−1 + dyN+m−(k+1)

≤
q + yN+m−1 + LyN+m−(k+1)

q + yN+m−1 + dyN+m−(k+1)

also,

q + yN+m−1 + LyN+m−(k+1)

q + yN+m−1 + dyN+m−(k+1)

≤
q + yN+m−1 + dyN+m−(k+1)

q + yN+m−1 + dyN+m−(k+1)

= 1

“as p < q and L < d”.
So,

yN+m ≤ 1.

Now, we will use induction hypothesis and the monotonicity properties of
the function yN+m, to show that yN+m ≥ p+L

q+d
.

So we will substitute yN+m−(k+1) = 1 and yN+m−1 = p+L
q+d

in the follow-
ing function,

yN+m =
p+ yN+m−1 + LyN+m−(k+1)

q + yN+m−1 + dyN+m−(k+1)
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since yN+m is increasing in yN+m−1 and decreasing in yN+m−(k+1), we get
the following,

yN+m =
p+ yN+m−1 + LyN+m−(k+1)

q + yN+m−1 + dyN+m−(k+1)

≥
p+ p+L

q+d
+ L(1)

q + p+L
q+d

+ d(1)
=

(p+ L)
[
1 + 1

q+d

]
(q + d)

[
1 + 1

q+d
p+L
q+d

]

but p+L
q+d

< 1.

So,

(p+ L)
[
1 + 1

q+d

]
(q + d)

[
1 + 1

q+d
p+L
q+d

] > p+ L

q + d

[
1 + 1

q+d

1 + 1
q+d

]
=
p+ L

q + d

then

yN+m ≥
p+ L

q + d

So,

yN+m ∈
[
p+ L

q + d
, 1

]
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2. Assume that L > d, p > q, dp > Lq and | Lq − dp |>| x(L − d) | then
by using partial derivative we can show that f(x, y) is decreasing in both
arguments.

Now, for some N > 0, and 1 ≤ yN−k, . . . , yN−1, yN ≤ p+L
q+d

we have the following result as p > q and L > d

yN+1 =
p+ yN + LyN−k
q + yN + dyN−k

≥ q + yN + LyN−k
q + yN + dyN−k

≥ q + yN + dyN−k
q + yN + dyN−k

= 1.

So,
yN+1 ≥ 1.

Also,

yN+1 =
p+ yN + LyN−k
q + yN + dyN−k

since yN+1 is decreasing in yN−k for each fixed yN , then by substituting
yN−k = 1, in the previous function we get the following,

yN+1 =
p+ yN + LyN−k
q + yN + dyN−k

≤ p+ yN + L(1)

q + yN + d(1)
=

(p+ L)
[
1 + yN

p+L

]
(q + d)

[
1 + yN

q+d

]

but 1
p+L

< 1
q+d

.

So,

(p+ L)
[
1 + yN

p+L

]
(q + d)

[
1 + yN

q+d

] <
p+ L

q + d

[
1 + yN

q+d

1 + yN

q+d

]
=
p+ L

q + d

then

yN+1 ≤
p+ L

q + d
.
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By Mathematical Induction we can see that yn ∈
[
1, p+L

q+d

]
, for all n > N .

We proved that yN+1 ∈
[
1, p+L

q+d

]
, so we just will show that if yN+m−1 ∈[

1, p+L
q+d

]
then yN+m ∈

[
1, p+L

q+d

]
.

yN+m =
p+ yN+m−1 + LyN+m−(k+1)

q + yN+m−1 + dyN+m−(k+1)

≥
q + yN+m−1 + LyN+m−(k+1)

q + yN+m−1 + dyN+m−(k+1)

also,

q + yN+m−1 + LyN+m−(k+1)

q + yN+m−1 + dyN+m−(k+1)

≥
q + yN+m−1 + dyN+m−(k+1)

q + yN+m−1 + dyN+m−(k+1)

= 1

“since p > q and L > d”.
So,

yN+m ≥ 1.

Also,
we will use induction hypothesis and the monotonicity properties of the
function yN+m, to show that yN+m ≤ p+L

q+d
.

Since yN+m is decreasing in yN+m−(k+1) for each fixed yN+m−1, then by
substituting yN+m−(k+1) = 1, in the previous function we get the follow-
ing,

yN+m =
p+ yN+m−1 + LyN+m−(k+1)

q + yN+m−1 + dyN+m−(k+1)

≤ p+ yN+m−1 + L(1)

q + yN+m−1 + d(1)
=

(p+ L)
[
1 + yN+m−1

p+L

]
(q + d)

[
1 + yN+m−1

q+d

]
but 1

p+L
< 1

q+d
.

So,

(p+ L)
[
1 + yN+m−1

p+L

]
(q + d)

[
1 + yN+m−1

q+d

] < p+ L

q + d

[
1 + yN+m−1

q+d

1 + yN+m−1

q+d

]
=
p+ L

q + d
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then

yN+m ≤
p+ L

q + d
.

The proof is complete.

3.3 Analysis Of Semi-Cycles

Our aim in this section is to study the semi-cycles behavior of solutions of
Eq. (3.2.1) relative to the equilibrium point ȳ and relative to the end points
of the invariant interval of Eq. (3.2.1).

Now we give the definitions for the positive and negative semi-cycle of the
solution of Eq. (3.2.1), relative to an equilibrium point ȳ.

Definition 3.3.1. [19] A positive semi-cycle of the solution {yn} of Eq. (3.2.1)
consists of a“ string ” of terms {yl, yl+1, . . . , ym}, all greater than or equal to
the equilibrium point ȳ, with l ≥ −k and m ≤ ∞ and such that,

either l = −k or l > −k and yl−1 < ȳ

and
either m =∞ or m <∞ and ym+1 < ȳ.

Definition 3.3.2. [19] A negative semi-cycle of the solution {yn} of Eq. (3.2.1)
consists of a“ string ” of terms {yl, yl+1, . . . , ym} all less than or equal to the
equilibrium point ȳ, with l ≥ −k and m ≤ ∞ and such that

either l = −k or l > −k and yl−1 ≥ ȳ
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and
either m =∞ or m <∞ and ym+1 ≥ ȳ.

The first semi-cycle of a solution starts with the term y−k it is positive if
y−k ≥ ȳ and negative if y−k < ȳ

Definition 3.3.3. [20] A solution {yn} of Eq. (3.2.1) is called non-oscillatory
if there exists N ≥ −k such that yn > ȳ for all n ≥ N or yn < ȳ for all
n ≤ N .
and a solution {yn} is called oscillatory if it is not non-oscillatory.

Definition 3.3.4. [9]

1. A solution {yn}∞n=−k of a difference equation is said to be periodic with
period p if xn+p = xn for all n ≥ −k.

2. A solution {yn}∞n=−k of a difference equation is said to be periodic with
prime period p or a p-cycle if it is periodic with period p and p is the least
positive integer for which xn+p = xn.
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Definition 3.3.5. Let {yn}∞n=−k be a solution of Eq. (3.2.1), we say that
the solution has a prime period two if the solution eventually takes the form:

. . . , φ, ψ, φ, ψ, . . .

where φ and ψ are distinct and positive.

Theorem 3.3.1. If k is even, then Eq. (3.2.1) has no nonnegative prime
period two solution.

Proof. Assume for the sake of contradiction that there exist distinct positive
real numbers φ and ψ, such that

. . . , φ, ψ, φ, ψ, . . .

is a prime period two solution of Eq. (3.2.1).
As k is even, so yn = yn−k

now, φ and ψ satisfy the systems

φ =
p+ ψ + Lψ

q + ψ + dψ

and

ψ =
p+ φ+ Lφ

q + φ+ dφ
.

So,
φq + φψ + dφψ = p+ ψ + Lψ (3.3.1)

ψq + φψ + dφψ = p+ φ+ Lφ. (3.3.2)

By subtracting Eq. (3.3.2) from Eq. (3.3.1), we get

q(φ− ψ) = (ψ − φ) + L(ψ − φ)

hence
(ψ − φ) [q + L+ 1] = 0.

As q + L+ 1 6= 0, then ψ − φ = 0 =⇒ ψ = φ

which contradicts the hypothesis of φ 6= ψ.
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Theorem 3.3.2. If k is odd then we have following results:

1- The Eq. (3.2.1) has no nonnegative prime period two in these two cases:

• L < 1 + q

• d > 1

2- If L > 1 + q and d < 1, then Eq. (3.2.1) has a prime period two solution

. . . , φ, ψ, φ, ψ, . . .

where the values ψ and φ are the solutions of the quadratic equation

t2 − (φ+ ψ)t+ φψ = 0

Proof. 1- Assume for the sake of contradiction that there exist distinct and
positive real numbers φ and ψ such that

. . . , φ, ψ, φ, ψ, . . .

is a prime period two solution of Eq. (3.2.1),

• k is odd then yn−k = yn+1 and in this case φ and ψ satisfy the
following systems

φ =
p+ ψ + Lφ

q + ψ + dφ

and

ψ =
p+ φ+ Lψ

q + φ+ dψ
.

So,
qφ+ φψ + dφ2 = p+ ψ + Lφ (3.3.3)

qψ + φψ + dψ2 = p+ φ+ Lψ (3.3.4)

subtract Eq. (3.3.4) from Eq. (3.3.3), we have

q(φ− ψ) + d(φ2 − ψ2) = (ψ − φ) + L(φ− ψ)

=⇒ (φ− ψ) [q + d(φ+ ψ)] = (φ− ψ) [−1 + L]

so,

(φ+ ψ) =
L− 1− q

d
=
L− (1 + q)

d
(3.3.5)
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when L < 1 + q then φ+ ψ < 0 and this contradicts the assumption
that φ and ψ are positive distinct real numbers.

• k is odd, from the previous steps we have,

φq + φψ + dφ2 = p+ ψ + Lφ (3.3.6)

ψq + φψ + dψ2 = p+ φ+ Lψ (3.3.7)

By adding Eq. (3.3.6) and Eq. (3.3.7) we get,

q(φ+ ψ) + 2φψ + d(φ2 + ψ2) = 2p+ (φ+ ψ) + L(φ+ ψ)

q(φ+ ψ) + 2φψ + d(φ2 + 2φψ − 2φψ + ψ2) = 2p+ (φ+ ψ) [1 + L]

q(φ+ ψ) + φψ(2− 2d) + d(φ+ ψ)2 = 2p+ (φ+ ψ) [1 + L]

hence

φψ(2− 2d) = 2p+ (φ+ ψ) [1 + L]− d(φ+ ψ)2 − q(φ+ ψ)

= 2p+ (φ+ ψ) [(1 + L)− d(φ+ ψ)− q]
but φ+ψ = L−1−q

d
, substitute the value of (φ+ψ) in the last equation

φψ(2− 2d) = 2p+

(
L− 1− q

d

)[
(1 + L)− d

(
L− 1− q

d

)
− q
]

then

φψ(2− 2d) = 2p+ 2

(
L− 1− q

d

)
so

φψ =
[pd+ (L− 1− q)]

d(1− d)
(3.3.8)

when d > 1 then φψ < 0, this contradicts the assumption that φ and
ψ are distinct and positive real numbers.

2- If L > (1 + q) and d < 1, then it is clear from Eq. (3.3.8) and Eq. (3.3.5)
that φ and ψ are two distinct real roots of the quadratic equation

t2 −
(
L− 1− q

d

)
t+

[pd+ (L− 1− q)]
d(1− d)

= 0
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which have the following values

ψ =
1

2

(
L− 1− q

d

)
− 1

2

√(
L− 1− q

d

)2

− 4

(
[pd+ (L− 1− q)]

d(1− d)

)
and

φ =
1

2

(
L− 1− q

d

)
+

1

2

√(
L− 1− q

d

)2

− 4

(
[pd+ (L− 1− q)]

d(1− d)

)
The proof is complete.
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Theorem 3.3.3. [5] Assume that f ∈ C[(0,∞) × (0,∞), (0,∞)] such that
f(x, y)is increasing in x for each fixed y, and decreasing in y for each fixed x.

Let ȳ be a positive equilibrium of Eq. (3.2.11), then every oscillatory solu-
tion of Eq. (3.2.11) has semi-cycles of length at least k.

Proof. The proof of this theorem will follow by using Mathematical Induc-
tion.
When k = 1, then the proof of this result is presented in Theorem 1.7.4 in
[16], so we just show that if the theorem is true for k = m− 1 then it will be
true when k = m.

Assume that {yn} is an oscillatory solution with m+ 1 consecutive terms
yN−1, yN , . . . , yN+m−1 such that yN−1 belong to the negative semi-cycle, and
the following terms belong to the positive semi-cycles.
So

yN−1 ≤ ȳ < yN+m−1.

From the previous assumption we can conclude that, when k = m − 1 then
every oscillatory solution of Eq. (3.2.11) has semi-cycles of length at least
m− 1 terms in the positive semi-cycles.
Now by using the monotonicity properties of the function f and the induc-
tion hypothesis we obtain

yN+m = f(yN+m−1, yN−1) > f(ȳ, ȳ) = ȳ.

Which shows that it has at least m terms in the positive semi-cycle.
Which completes the proof.

Theorem 3.3.4. [16] Assume that f ∈ C[(0,∞) × (0,∞), (0,∞)] is such
that f(x, y)is decreasing in x for each fixed y, and increasing in y for each
fixed x.
Let ȳ be a positive equilibrium of Eq. (3.2.11), then except possibly for the
first semi-cycle every oscillatory solution of Eq. (3.2.11) has semi-cycles of
length k.

Proof. In this proof we will use mathematical induction.
When k = 1, then the proof of this result is presented in Theorem 1.7.1 in
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[16], assume that if the theorem is true when k = m − 1 then we will show
that is true for k = m.

Assume that {yn} is a solution of equation (3.2.11) with m + 1 consecutive
terms yN−1, yN , . . . , yN+m−1 such that yN−1 belong to the negative semi-
cycle, and the following terms belong to the positive semi-cycles.
So

yN−1 ≤ ȳ < yN+m−1.

From the previous assumption we can conclude that, when k = m − 1 then
every oscillatory solution of Eq. (3.2.11) has semi-cycles of length m−1 terms
in the positive semi-cycles.
Then by using the monotonicity properties of the function f and the induc-
tion hypothesis we have

yN+m = f(yN+m−1, yN−1) < f(ȳ, ȳ) = ȳ

and
yN+m+1 = f(yN+m, yN) > f(ȳ, ȳ) = ȳ.

Thus
yN+m < ȳ < yN+m+1

Which shows that it has m terms in the positive semi-cycle, which completes
the proof.
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Theorem 3.3.5. [16] Assume that f ∈ C[(0,∞) × (0,∞), (0,∞)] and that
f(x, y) is increasing in both arguments.
Let ȳ be a positive equilibrium of Eq. (3.2.11). Then except possibly for the
first semi-cycle, every oscillatory solution of Eq. (3.2.11) has semi-cycles of
length k.

Proof. We will use mathematical induction to proof this theorem.
When k = 1, then the proof of this result is presented in Theorem 1.7.3 in
[16], assume that is true for k = m−1, then we will prove the theorem when
k = m.

Assume that {yn} is an oscillatory solution with m + 1 consecutive terms
yN−1, yN , . . . , yN+m−1 in a positive semi-cycle

yN−1 ≥ ȳ, yN ≥ ȳ, . . . , yN+m−1 > ȳ

with at least half of the inequalities being strict. From the previous assump-
tion we can conclude that, when k = m − 1 then every oscillatory solution
of Eq. (3.2.11) has semi-cycles of length m− 1.
Then by using the increasing character of f and the induction hypothesis we
obtain:

yN+m = f(yN+m−1, yN−1) > f(ȳ, ȳ) = ȳ

So it followed by induction that all the terms of this solution belong to this
positive semi-cycle, which is a contradiction.

Theorem 3.3.6. [5] Assume that f ∈ C[(0,∞) × (0,∞), (0,∞)]and that
f(x, y) is decreasing in both arguments.
Let ȳ be a positive equilibrium of Eq. (3.2.11), then every oscillatory solution
of Eq. (3.2.11) has semi-cycles of length at most k.

Proof. When k = 1, then the proof of this result is presented in Theorem
1.7.2 in [16], assume the theorem holds for k = m− 1 then by using mathe-
matical induction we can prove the theorem for the case k = m.



3 DYNAMICS OF XN+1 = α+βXN +γXN−K

A+BXN +CXN−K
56

Assume that {yn} is an oscillatory solution with m+ 1 consecutive terms
yN−1, yN , . . . , yN+m−1 in a positive semi cycles.
yN−1 ≥ ȳ, yN ≥ ȳ, . . . , yN+m−1 > ȳ, with at least half of the inequality begin
strict. We can conclude from the previous assumption that, when k = m− 1
then every oscillatory solution of Eq. (3.2.11) has semi-cycles of length at
most m− 1 terms in the positive semi-cycles.
Then by using the decreasing character of f and the induction hypothesis we
obtain,

yN+m = f(yN+m−1, yN−1) < f(ȳ, ȳ) = ȳ

which completes the proof.

Let {yn}∞n=−k be a solution of Eq. (3.2.1) then the following are true:

yn+1 − 1 = (d− L)

[
( p−q
d−L)− yn−k

q + yn + dyn−k

]
(3.3.9)

Notice that p−q
d−L < 0, thus p−q

d−L <
p+L
d+q

so we have the following equation:

yn+1− 1 = (d−L)

[
( p−q
d−L)− yn−k

q + yn + dyn−k

]
< (d−L)

[
(p+L
d+q

)− yn−k
q + yn + dyn−k

]
. (3.3.10)

Also, (
yn+1 −

p+ L

q + d

)
=

(1− p+L
q+d

)yn + (p+ q)[1− yn−k]
q + yn + dyn−k

(3.3.11)

Case I:

We will analyze the semi-cycles of the solution {yn}∞n=−k under the assump-
tion that

p < q, L < d and dp > Lq. (3.3.12)

By using Eqs. (3.3.9), (3.3.10) and (3.3.11) we get the following results:
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Lemma 3.3.1. Assume that (3.3.12) holds, and let {yn}∞n=−k be a solution
of Eq. (3.2.1), then the following statements are true:

1. For some N ≥ 0, if yN−k ≥ p+L
q+d

, then yN+1 ≤ 1.

2. For some N ≥ 0, if yN−k <
p+L
q+d

, then yN+1 > 1.

3. For some N ≥ 0, if yN−k ≤ 1, then yN+1 ≥ p+L
q+d

.

4. For some N ≥ 0, if p+L
q+d
≤ yN−k ≤ 1, then p+L

q+d
≤ yN+1 ≤ 1.

5. For some N ≥ 0, if p+L
q+d
≤ yN−k, . . . , yN−1, yN ≤ 1,

then yn ∈
[
p+L
q+d

, 1
]

for n ≥ N , where
[
p+L
q+d

, 1
]

is an invariant interval of

Eq. (3.1.2).

6. p+L
q+d

< ȳ < 1.

Proof. Assume that Eq. (3.3.12) holds, then

1. for some N ≥ 0 if yN−k ≥ p+L
q+d

, then we can conclude that yN+1 − 1 ≤ 0

by using Eq. (3.3.10). So yN+1 ≤ 1.

2. for some N ≥ 0 and yN−k <
p+L
q+d

, when yN−k <
p−q
d−L then yN+1 − 1 > 0

but yN−k <
p−q
d−L < p+L

d+q
then by using Eq. (3.3.10) we can conclude that

yN+1 − 1 > 0 and so yN+1 > 1.

3. for some N ≥ 0 if yN−k ≤ 1 then from Eq. (3.3.11) we can conclude that
yN+1 − p+L

q+d
≥ 0, so yN+1 ≥ p+L

q+d
.

4. for some N ≥ 0, p+L
q+d
≤ yN−k ≤ 1, we see from (1) that if yN−k ≥ p+L

q+d

then yN+1 ≤ 1, also we see that if yN−k ≤ 1 then yN+1 ≥ p+L
q+d

so we

conclude that p+L
q+d
≤ yN+1 ≤ 1.
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5. if for some N ≥ 0, then we see from (4) that if p+L
q+d
≤ yN−k ≤ 1 then

p+L
q+d
≤ yN+1 ≤ 1. Also we can see that if p+L

q+d
≤ yN−k, . . . , yN−1, yN ≤ 1,

then yn ∈
[
p+L
q+d

, 1
]

for n ≥ N by using Eqs. (3.3.10) and (3.3.11), so[
p+L
q+d

, 1
]

is an invariant interval for Eq. (3.1.2).

6. By using (5), as
[
P+L
q+d

, 1
]

is an invariant interval, then p+L
q+d

< ȳ < 1.

Theorem 3.3.7. Assume that Eq. (3.3.12) holds. Then every non trivial and

oscillatory solution of Eq. (3.2.1) which lies in the interval
[
p+L
q+d

, 1
]

oscillates

about ȳ with semi-cycles of length at least k.

Proof. Assume that Eq. (3.3.12) holds then Eq. (3.2.1) is increasing in x

and decreasing in y, ∀x, y ∈
[
p+L
q+d

, 1
]

so we see by using Theorem (3.3.3)

that every non trivial and oscillatory solution of Eq. (3.2.1) has semi-cycle
of length at least k.

Case II:

Now, we will analyze the semi-cycles of the solution {yn}∞n=−k under the
assumption that

p > q, L > d and dp > Lq. (3.3.13)

The following results is a direct consequences of Eqs. (3.3.9), (3.3.10) and
(3.3.11)

Lemma 3.3.2. Assume that (3.3.13) holds, and let {yn}∞n=−k be a solution
of Eq. (3.2.1), then the following statements are true:

1. For some N ≥ 0, if yN−k ≤ p+L
q+d

, then yN+1 ≥ 1.

2. For some N ≥ 0, if yN−k ≥ p+L
q+d

, then yN+1 ≤ 1.
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3. For some N ≥ 0, if yN−k ≥ 1, then yN+1 ≤ p+L
q+d

.

4. For some N ≥ 0, if 1 ≤ yN−k ≤ p+L
q+d

, then 1 ≤ yN+1 ≤ p+L
q+d

.

5. For some N ≥ 0, if 1 ≤ yN−k, . . . , yN−1, yN ≤ p+L
q+d

,

then yn ∈
[
1, p+L

q+d

]
for n ≥ N . where

[
1, p+L

q+d

]
is an invariant interval of

Eq. (3.1.2).

6. 1 < ȳ < p+L
q+d

.

Proof. Assume that Eq. (3.3.13) holds, then

1. for some N ≥ 0, when yN−k ≤ p−q
d−L then yN+1 − 1 ≥ 0 but yN−k ≤ p−q

d−L <
p+L
d+q

then by using Eq. (3.3.10) we can conclude that yN+1− 1 ≥ 0 and so
yN+1 ≥ 1.

2. for some N ≥ 0 if yN−k ≥ p+L
q+d

, then we can conclude that yN+1 − 1 ≤ 0

by using Eq. (3.3.10). So yN+1 ≤ 1.

3. for some N ≥ 0 if yN−k ≥ 1 then from Eq. (3.3.11) we can conclude that
yN+1 − p+L

q+d
≤ 0, so yN+1 ≤ p+L

q+d
.

4. for some N ≥ 0, 1 ≤ yN−k ≤ p+L
q+d

, we see from (1) that if yN−k ≤ p+L
q+d

then yN+1 ≥ 1, also we see that if yN−k ≥ 1 then yN+1 ≤ p+L
q+d

so we

conclude that 1 ≤ yN+1 ≤ p+L
q+d

.

5. if for some N ≥ 0, then we see from (4) that if 1 ≤ yN−k ≤ p+L
q+d

then

1 ≤ yN+1 ≤ p+L
q+d

. Also we can see that if 1 ≤ yN−k, . . . , yN−1, yN ≤ p+L
q+d

,

then yn ∈
[
1, p+L

q+d

]
for n ≥ N by using Eqs. (3.3.10) and (3.3.11), so[

1, p+L
q+d

]
is an invariant interval for Eq. (3.1.2).

6. By using (5), as
[
1, P+L

q+d

]
is an invariant interval, then 1 < ȳ < p+L

q+d
.
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Theorem 3.3.8. Assume that Eq. (3.3.13) holds. Then every non trivial and

oscillatory solution of Eq. (3.2.1) which lies in the interval
[
1, p+L

q+d

]
oscillates

about ȳ with semi-cycles of length at most k.

Proof. Assume that Eq. (3.3.13) holds then Eq. (3.2.1) is decreasing in both

arguments, ∀x, y ∈
[
1, p+L

q+d

]
so we see by using Theorem (3.3.6) that every

non trivial and oscillatory solution of Eq. (3.2.1) has semi-cycles of length at
most k.

Case III:

We will analyze the semi-cycles of the solution {yn}∞n=−k under assumption
that

p = q and d = L. (3.3.14)

In this case Eq. (3.3.11) reduces to

yn+1 − 1 =
(p+ q) [1− yn−k]
q + yn + dyn−k

(3.3.15)

so, the following results follow directly:

Lemma 3.3.3. Let {yn}∞n=−k be a solution of Eq. (3.2.1), and assume that
(3.3.14) holds, then the following statements are true:

1. For some N ≥ 0, yN−k < 1, then yN+1 > 1.

2. For some N ≥ 0, yN−k = 1, then yN+1 = 1.

3. For some N ≥ 0, yN−k > 1, then yN+1 < 1.

Proof. Assume that Eq. (3.3.14) holds, then
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1. for some N ≥ 0 if yN−k < 1 then we conclude that yN+1 − 1 > 0 and so
yN+1 > 1 by using Eq. (3.3.15).

2. for some N ≥ 0 if yN−k = 1 then we get yN+1−1 = 0 from Eq. (3.3.15). So
yN+1 = 1

3. for some N ≥ 0, if yN−k > 1, then yN+1 − 1 < 0, which implies yN+1 < 1

Corollary 3.3.1. Assume that Eq. (3.3.14) holds. Then every non trivial
solution of Eq. (3.2.1) oscillates about the equilibrium point ȳ.

Proof. We notice that by using lemma (3.3.3) if yN−k ≤ 1, then yN+1 ≥ 1,
also if yN−k ≥ then yN+1 ≤ 1, which means that the solution {yn}∞n=−k
oscillates about the equilibrium point ȳ= 1.
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3.4 Global Stability

In this section we consider the global asymptotic stability of Eq. (3.2.1).
In section (3.2), we investigated local stability of the positive equilibrium
point so it is sufficient to investigate the globally attractive of positive equi-
librium point.

Now, we present some theorems which will be used in this section.

Theorem 3.4.1. [22] [16] Let I = [a, b] be some interval of real numbers
and assume that

f : [a, b]× [a, b] −→ [a, b]

is a continuous function satisfying the following properties:

(a) f(x, y) is non decreasing in x, and non increasing in y where x, y ∈ [a, b].

(b) If (m,µ) ∈ [a, b]× [a, b] is a solution of the system.

m = f(m,µ) and µ = f(µ,m),

then m = µ.
Then Eq. (3.2.11) has a unique equilibrium point ȳ and every solution of
Eq. (3.2.11) converges to ȳ.

Proof. Set
m0 = a and µ0 = b

and for i = 1, 2, . . . set

µi = f(µi−1,mi−1) and mi = f(mi−1, µi−1).

Now observe that for each i ≥ 0,

m0 ≤ m1 ≤ · · · ≤ mi ≤ · · · ≤ µi ≤ · · · ≤ µ1 ≤ µ0
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and
mi ≤ yk ≤ µi for k ≥ 2i+ 1.

Set
m = lim

i−→∞
mi and µ = lim

i−→∞
µi.

Then
µ ≥ lim sup

i−→∞
yi ≥ lim inf

i−→∞
yi ≥ m

and by the continuity of f ,

m = f(m,µ) and µ = f(µ,m).

In view of (b),
µ = m

from which the result follows.

Theorem 3.4.2. [16] Let I = [a, b] be an interval of real numbers
and assume that

f : [a, b]× [a, b] −→ [a, b]

is a continuous function satisfying the following properties:

(a) f(x, y) is non increasing in each of its arguments.

(b) If (m,µ) ∈ [a, b]× [a, b] is a solution of the system

µ = f(m,m) and m = f(µ, µ),

then m = µ.
Then Eq. (3.2.11) has a unique equilibrium point ȳ and every solution of
Eq. (3.2.11) converges to ȳ.

Proof. Set
m0 = a and µ0 = b
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and for i = 1, 2, . . . set

µi = f(mi−1,mi−1) and mi = f(µi−1, µi−1).

Now observe that for each i ≥ 0,

m0 ≤ m1 ≤ · · · ≤ mi ≤ · · · ≤ µi ≤ . . . µ1 ≤ µ0

and
mi ≤ yk ≤ µi for k ≥ 2i+ 1.

Set
m = lim

i−→∞
mi and µ = lim

i−→∞
µi.

Then clearly
µ ≥ lim sup

i−→∞
yi ≥ lim inf

i−→∞
yi ≥ m

and by the continuity of f ,

µ = f(m,m) and m = f(µ, µ).

In view of (b),
µ = m = ȳ

from which the result follows.

Theorem 3.4.3. [22] [9] Let I = [a, b] be an interval of real numbers and
assume that

f : [a, b]× [a, b] −→ [a, b]

is a continuous function satisfying the following properties:

(a) f(x, y) is non increasing in x for each fixed y and f(x, y) is non decreas-
ing in y for each fixed x, where x, y ∈ [a, b].

(b) The difference Eq. (3.2.11) has no solutions of prime period two in [a,b].
Then the difference Eq. (3.2.11) has a unique equilibrium point ȳ ∈ [a, b]
and every solution of it converges to ȳ.
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Proof. Set
m0 = a and µ0 = b

and for i = 1, 2, . . . set

µi = f(mi−1, µi−1) and mi = f(µi−1,mi−1).

Now observe that for each i ≥ 0,

m0 ≤ m1 ≤ · · · ≤ mi ≤ · · · ≤ µi ≤ · · · ≤ µ1 ≤ µ0,

and
mi ≤ yk ≤ µi for k ≥ 2i+ 1.

Set
m = lim

i−→∞
mi and µ = lim

i−→∞
µi.

Then clearly
µ ≥ lim sup

i−→∞
yi ≥ lim inf

i−→∞
yi ≥ m

and by the continuity of f ,

µ = f(m,µ) and m = f(µ,m).

In view of (b),
µ = m = ȳ

from which the result follows.

Theorem 3.4.4. [16] Let I = [a, b] be an interval of real numbers and as-
sume that

f : [a, b]× [a, b] −→ [a, b]

is a continuous function satisfying the following properties:

(a) f(x, y) is non decreasing in each of its arguments.

(b) If (m,µ) ∈ [a, b]× [a, b] is a solution of the system

µ = f(µ, µ) and m = f(m,m)
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then m = µ.
Then Eq. (3.2.11) has a unique positive equilibrium point, and every pos-
itive solution of Eq. (3.2.11) converges to ȳ.

Proof. Set
m0 = a and µ0 = b

and for i = 1, 2, . . . set

µi = f(µi−1, µi−1) and mi = f(mi−1,mi−1).

Now observe that for each i ≥ 0,

m0 ≤ m1 ≤ · · · ≤ mi ≤ · · · ≤ µi ≤ · · · ≤ µ1 ≤ µ0

and
mi ≤ yk ≤ µi for k ≥ 2i+ 1.

Set
m = lim

i−→∞
mi and µ = lim

i−→∞
µi.

Then clearly
µ ≥ lim sup

i−→∞
yi ≥ lim inf

i−→∞
yi ≥ m

and by the continuity of f ,

m = f(m,m) and µ = f(µ, µ).

In view of (b)
µ = m = ȳ

from which the result follows.

From the above discussion we have the main result of this section as
follows:
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Theorem 3.4.5. Assume that p > q, L > d and dp > Lq then the
equilibrium point of Eq. (3.2.1) is globally asymptotically stable in the

interval
[
1, p+L

q+d

]
.

Proof. We use Theorem (3.4.2), assume that p > q, L > d and dp > Lq and

suppose that
[
1, p+L

q+d

]
is an invariant interval for the function

f(x, y) =
p+ x+ Ly

q + x+ dy
.

We saw that in this interval the function f(x, y) is decreasing in both argu-
ments, so part (a) of Theorem (3.4.2) holds.

Now, let (m,µ) ∈ [a, b]× [a, b] is a solution of the system
f(m,m) = µ and f(µ, µ) = m.
then

m =
p+ µ+ Lµ

q + µ+ dµ
and µ =

p+m+ Lm

q +m+ dm
.

But we saw that this equation has no period two solution
“ when yn = yn−k, k is even ”.

So, the only solution is m = µ.

The two conditions of Theorem (3.4.2) hold, then every solution of Eq. (3.2.1)

converge to ȳ in the interval
[
1, p+L

q+d

]
.

So the equilibrium point ȳ is globally attractive.

Theorem 3.4.6. Assume that p < q, L < d and dp > Lq then the
equilibrium point of Eq. (3.2.1) is globally asymptotically stable in the

interval
[
p+L
q+d

, 1
]
.



3 DYNAMICS OF XN+1 = α+βXN +γXN−K

A+BXN +CXN−K
68

Proof. We use Theorem (3.4.1). Assume that p < q, L < d and dp > Lq

and suppose that
[
p+L
q+d

, 1
]

is an invariant interval for the function

f(x, y) =
p+ x+ Ly

q + x+ dy
.

We saw that in this interval the function f(x, y) is increasing in x and de-
creasing in y, so part (a) of Theorem (3.4.1) holds.

Now, let (m,µ) ∈ [a, b]× [a, b] be a solution of the system
f(m,µ) = m and f(µ,m) = µ
then

m =
p+m+ Lµ

q +m+ dµ
and µ =

p+ µ+ Lm

q + µ+ dm

Then m = µ.

So, the two conditions of Theorem (3.4.1) hold. Then by Theorem (3.4.1)

every solution of Eq. (3.2.1) converge to ȳ in the interval
[
p+L
q+d

, 1
]
. So the

equilibrium point ȳ is globally attractive.

Since ȳ is asymptotically stable, then by Definition (3.1.2), ȳ is globally
asymptotically stable.
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4 The Special cases αβγABC = 0

In this chapter we will study the character of solution of Eq. (3.1.1) where
one, two or more of the parameters in Eq. (3.1.1) are zeros. There are many
equations that arise by considering zero parameters.
Notice that some of these equations have been studied and few of them are
meaningless such as the case when all the parameters in the denominator or
the numerator are zero.

4.1 One Parameter =0

In this section we will study the character of the solution of Eq. (3.1.1) where
one parameter in Eq. (3.1.1) equals zero. There are six cases, namely:

xn+1 =
α + βxn + γxn−k

A+Bxn
, n = 0, 1, 2, . . . (4.1.1)

xn+1 =
α + βxn + γxn−k
A+ Cxn−k

, n = 0, 1, 2, . . . (4.1.2)

xn+1 =
α + βxn + γxn−k
Bxn + Cxn−k

, n = 0, 1, 2, . . . (4.1.3)

xn+1 =
α + βxn

A+Bxn + Cxn−k
, n = 0, 1, 2, . . . (4.1.4)

xn+1 =
α + γxn−k

A+Bxn + Cxn−k
, n = 0, 1, 2, . . . (4.1.5)

xn+1 =
βxn + γxn−k

A+Bxn + Cxn−k
, n = 0, 1, 2, . . . (4.1.6)

Where the remaining parameters α, β, γ, and A,B,C are non-negative
real numbers and the initial conditions x−k, . . . , x−1, x0 are arbitrary real
numbers, and the denominator is nonzero.
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4.1.1 The Case C = 0 : xn+1 = α+βxn+γxn−k

A+Bxn

Lemma 4.1.1. The change of variables xn = A
B
yn, reduces Eq. (4.1.1) to the

difference equation

yn+1 =
p+ qyn + ryn−k

1 + yn
(4.1.7)

where p = αB
A2 , q = β

A
, and r = γ

A
and the initial conditions

y−k, . . . , y0 are arbitrary nonnegative real numbers.

Proof. Substitute xn = A
B
yn in Eq. (4.1.1), we get:

A

B
yn+1 =

α + βA
B
yn + γA

B
yn−k

A+ BA
B
yn

then

yn+1 =
A
[
αB
A2 + β

A
yn + γ

A
yn−k

]
A [1 + yn]

set p = αB
A2 , q = β

A
, and r = γ

A
, then we get Eq. (4.1.7).

Eq. (4.1.7) was investigated by R.M.Sebdani and M.Dehghan in [21].

4.1.2 The Case B = 0 : xn+1 = α+βxn+γxn−k

A+Cxn−k

Lemma 4.1.2. The change of variables xn = γ
C
yn reduces Eq. (4.1.2)

to the difference equation

yn+1 =
p+ Lyn + yn−k

q + yn−k
n = 0, 1, . . . (4.1.8)

Where p = αC
γ2 , q = A

γ
and L = β

γ
.

And the initial conditions y−k, . . . , y0 are arbitrary nonnegative real numbers.
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Proof. Substitute xn = γ
C
yn in Eq. (4.1.2) we get,

γ

C
yn+1 =

α + βγ
C
yn + γ2

C
yn−k

A+ Cγ
C
yn−k

so,

yn+1 =
γ
[
αC
γ2 + β

γ
yn + yn−k

]
γ
[
A
γ

+ yn−k

]
set p = αC

γ2 , q = A
γ

and L = β
γ
.

Then we get Eq. (4.1.8).

The only positive equilibrium point of Eq. (4.1.8) is

ȳ =
(L+ 1− q) +

√
(q − L− 1)2 + 4p

2
.

And the linearized equation is

zn+1 +
−L(q + ȳ)

(q + ȳ)2
zn +

(p+ Lȳ)− q
(q + ȳ)2

zn−k = 0.

Theorem 4.1.1. Assume that p + L > q, where ȳ > L, ȳ > 1 and L < 1
then equilibrium point ȳ of Eq. (4.1.8) is locally stable.

The proof follows immediately from Theorem (3.2.2).

Theorem 4.1.2. Let {yn}∞n=−k be a solution of Eq. (4.1.8), then Eq. (4.1.8)
has no solution of prime period two in the following two cases:

• k is even.

• k is odd and q + L > 1
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Proof. Let
. . . , φ, ψ, φ, ψ, . . .

be a period two solution of Eq. (4.1.8), where φ and ψ are real numbers.

k is even, then we have the following systems:

φ =
p+ ψ + Lψ

q + ψ
and ψ =

p+ φ+ Lφ

q + φ
. (4.1.9)

By simplifying (4.1.9) we obtain,

(φ− ψ) [q + 1 + L] = 0

as q 6= −(1 + L) then φ = ψ.

•• If k is odd, then we have the following systems

ψ =
p+ Lφ+ ψ

q + ψ
and φ =

p+ Lψ + φ

q + φ
(4.1.10)

simplifying the relation in Eq. (4.1.10) to get,

(φ− ψ) [q + (φ+ ψ) + L− 1] = 0

=⇒ φ+ ψ = 1− (q + L) when (L+ q) > 1, then φ+ ψ < 0
and this is a contradiction.

So, φ = ψ

Theorem 4.1.3. Assume that p + L > q and ȳ > 1 then the equilibrium

point ȳ of Eq. (4.1.8) is globally attractive on the interval
[
1, p+L

q

]
.
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Proof. When p+ L > q, and x > 1 then the function

f(x, y) =
p+ Lx+ y

q + y

is decreasing in y and increasing in x, where x, y ∈
[
1, p+L

q

]
.

We can easily see that the equilibrium point ȳ is globally attractive,
by using Theorem (3.4.1).

Theorem 4.1.4. Assume that p + L > q and ȳ > 1 then every oscillatory
solution of Eq. (4.1.8) has semi-cycles of length at least k.

The proof follows from Theorem (3.3.3)

Eq. (4.1.3) was investigated by A.Farhat in [13] and by A.E.Alaweneh
in [3].
Also, Eq. (4.1.4) was investigated by M.Abu Alhalawa in [2].

4.1.3 The case β = 0 : xn+1 = α+γxn−k

A+Bxn+Cxn−k

Lemma 4.1.3. The change of variables xn = γ
C
yn reduces Eq. (4.1.5)

to the difference equation

yn+1 =
p+ yn−k

q + dyn + yn−k
n = 0, 1, . . . (4.1.11)

Where p = αC
γ2 , q = A

γ
and d = B

C
.

And the initial conditions y−k, . . . , y0 are arbitrary nonnegative real num-
bers.
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Proof. Substitute xn = γ
C
yn in Eq. (4.1.5) we get,

γ

C
yn+1 =

α + γ γ
C
yn−k

A+ βγ
C
yn + Cγ

C
yn−k

cancel γ
C

from both side

=⇒ yn+1 =
γ
[
αC
γ2 + yn−k

]
γ
[
A
γ

+ β
C
yn + yn−k

]
set p = αC

γ2 , q = A
γ

and d = B
C

we obtain Eq. (4.1.11).

The only positive equilibrium point of Eq. (4.1.11) is

ȳ =
(1− q) +

√
(q − 1)2 + 4p(d+ 1)

2(d+ 1)
.

And the linearized equation is

zn+1 +
d(p+ ȳ)

(q + dȳ + ȳ)2
zn +

p− q − dȳ
(q + dȳ + ȳ)2

zn−k = 0.

Theorem 4.1.5. The equilibrium point

ȳ =
(1− q) +

√
(q − 1)2 + 4p(d+ 1)

2(d+ 1)

is locally stable when p > q + d, ȳ ≤ 1.

The proof follows immediately from Theorem (3.2.2).

Theorem 4.1.6. Let {yn}∞n=−k be a solution of Eq. (4.1.11), then the follow-
ing are true:

1. If k is odd and q > 1, then Eq. (4.1.11) has no solution of prime period two.
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2. If k is even, then Eq. (4.1.11) has no solution of prime period two.

Proof. Let
. . . , φ, ψ, φ, ψ, . . .

be a period two solution of Eq. (4.1.11), where φ and ψ are real numbers.

1. If k is odd, then yn−k = yn+1 and φ and ψ satisfy the following systems:

φ =
p+ φ

q + dψ + φ
and ψ =

p+ ψ

q + dφ+ ψ
(4.1.12)

simplifying the relation in Eq. (4.1.12) we obtain,

(φ− ψ) [q − 1 + φ+ ψ] = 0

as φ 6= ψ then φ+ ψ = 1− q, when q > 1
this is obvious contradiction.

2. If k is even, then yn−k = yn and φ, ψ satisfy the following systems:

φ =
p+ ψ

q + dψ + ψ
and ψ =

p+ φ

q + dφ+ φ
. (4.1.13)

Simplifying relation (4.1.13) we obtain ,

q(φ− ψ) = (ψ − φ)

=⇒ (φ− ψ) [q + 1] = 0

as q 6= −1 then φ = ψ.

So, Eq. (4.1.11) has no prime period two solution.
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Theorem 4.1.7. Assume that p > q+d and ȳ ≤ 1 then the equilibrium point

ȳ of Eq. (4.1.11) is globally attractive on the interval
[
q+d
p
, 1
]
.

Proof. When p > q + d and x ≤ 1 then the function

f(x, y) =
p+ y

q + dx+ y

is decreasing in both arguments.
And as the Eq. (4.1.11) has no solution of prime period two, then by using
Theorem (3.4.2) we see that, the equilibrium point ȳ is globally attractor.

Theorem 4.1.8. Assume that p > q + d and ȳ ≤ 1 then every oscillatory
solution of Eq. (4.1.11) has semi cycles of length at most k.

The proof follows from Theorem (3.3.6).

4.1.4 The case α = 0 : xn+1 = βxn+γxn−k

A+Bxn+Cxn−k

Lemma 4.1.4. The change of variables xn = γ
C
yn reduces Eq. (4.1.6)

to the difference equation

yn+1 =
pyn + yn−k

q + dyn + yn−k
(4.1.14)

where p = β
γ

, q = A
γ

, and d = B
C

and the initial conditions y−k, . . . , y0 are
arbitrary nonnegative real numbers.

Proof. Substitute xn = γ
C
yn in Eq. (4.1.14), we get

γ

C
yn+1 =

βγ
C
yn + γ γ

C
yn−k

A+ βγ
C
yn + Cγ

C
yn−k

cancel γ
C

from both side

=⇒ yn+1 =
γ
[
β
γ
yn + yn−k

]
γ
[
A
γ

+ β
C
yn + yn−k

]
set p = β

γ
, q = A

γ
and d = B

C
we obtain Eq. (4.1.14).
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The Eq. (4.1.14)has two equilibrium points

ȳ = 0 and ȳ =
p+ 1− q
(d+ 1)

.

And the linearized equation is

zn+1 −
(
pq + (p− d)ȳ

(q + dȳ + ȳ)2

)
zn +

(
q + (d− p)ȳ
(q + dȳ + ȳ)2

)
zn−k = 0.

Theorem 4.1.9. Assume that p > q + d and p > d, d > 1 and dȳ > p then
the equilibrium point

ȳ =
p+ 1− q
(d+ 1)

is locally stable.

The proof follows immediately from Theorem (3.2.2).

Theorem 4.1.10. Let {yn}∞n=−k be a solution of Eq. (4.1.14), then Eq. (4.1.14)
has no solution of prime period two in the following two cases:

1. If k is odd and p+ q > 1.

2. If k is even and q 6= 1 + p.

Proof. Let
. . . , φ, ψ, φ, ψ, . . .

be a period two solution of Eq. (4.1.14), where φ and ψ are real numbers.

1. If k is odd, then yn−k = yn+1 then φ and ψ satisfy the following systems:

φ =
pψ + φ

q + dψ + φ
and ψ =

pφ+ ψ

q + dφ+ ψ
(4.1.15)
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Thus, we have
(ψ − φ) [q − 1 + p+ φ+ ψ] = 0

if φ 6= ψ then we have φ+ ψ = 1− (p+ q), when p+ q > 1 then this is a
contradiction as φ and ψ must be positive.

2. If k is even, then yn−k = yn and φ, ψ satisfy the following systems:

φ =
pψ + ψ

q + dψ + ψ
and ψ =

pφ+ φ

q + dφ+ φ
(4.1.16)

hence, we have

(φ− ψ) [p+ q + 1] = 0

when q 6= −(1 + p) then φ = ψ.

So, Eq. (4.1.14) has no prime period two solution.

Theorem 4.1.11. Assume that p > q + d where p > d then the equilibrium

point ȳ of Eq. (4.1.14) is globally attractive on the interval
[
1, p

q+d

]
.

Proof. When p > q + d and p > d then the function

f(x, y) =
px+ y

q + dx+ y

is decreasing in y where y ∈
[
1, p

q+d

]
.

And the function f(x, y) is increasing in x when p > q + d and p > d.

Then by using Theorem (3.4.1) we can see that, the equilibrium point

ȳ = p+1−q
(d+1)

is globally attractive on the interval
[
1, p

q+d

]
.



4 THE SPECIAL CASES αβγABC = 0 79

Theorem 4.1.12. Assume that p > q+d where p > q then every oscillatory
solution of Eq. (4.1.14) has semi-cycles of length at least k.

The proof follows from Theorem (3.3.3).

4.2 Two Parameters are zero

In this section we will study the character of solution of Eq. (3.1.1) where
two parameters are zero. There are fifteen cases for this equation, namely:

xn+1 =
γxn−k

A+Bxn + Cxn−k
, n = 0, 1, 2, . . . (4.2.1)

xn+1 =
βxn

A+Bxn + Cxn−k
, n = 0, 1, 2, . . . (4.2.2)

xn+1 =
α

A+Bxn + Cxn−k
, n = 0, 1, 2, . . . (4.2.3)

xn+1 =
α + βxn + γxn−k

A
, n = 0, 1, 2, . . . (4.2.4)

xn+1 =
α + βxn + γxn−k

Bxn
, n = 0, 1, 2, . . . (4.2.5)

xn+1 =
α + βxn + γxn−k

Cxn−k
, n = 0, 1, 2, . . . (4.2.6)

xn+1 =
βxn + γxn−k
Bxn + Cxn−k

, n = 0, 1, 2, . . . (4.2.7)

xn+1 =
βxn + γxn−k
A+ Cxn−k

, n = 0, 1, 2, . . . (4.2.8)

xn+1 =
βxn + γxn−k
A+Bxn

, n = 0, 1, 2, . . . (4.2.9)

xn+1 =
α + γxn−k

Bxn + Cxn−k
, n = 0, 1, 2, . . . (4.2.10)

xn+1 =
α + γxn−k
A+ Cxn−k

, n = 0, 1, 2, . . . (4.2.11)
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xn+1 =
α + γxn−k
A+Bxn

, n = 0, 1, 2, . . . (4.2.12)

xn+1 =
α + βxn

Bxn + Cxn−k
, n = 0, 1, 2, . . . (4.2.13)

xn+1 =
α + βxn
A+ Cxn−k

, n = 0, 1, 2, . . . (4.2.14)

xn+1 =
α + βxn
A+Bxn

, n = 0, 1, 2, . . . (4.2.15)

Where the parameters α, β, γ and A, B, C are non-negative real numbers
and the initial conditions x−k, . . . , x−1, x0 are arbitrary real numbers, and the
denominator is nonzero.

Of these equations, Eq. (4.2.4) is linear difference equation.
Eq. (4.2.15) is a Riccati equation.
The positive equilibrium point of Eq. (4.2.15) is globally asymptotically sta-
ble.

4.2.1 The Case α=β = 0 : xn+1 = γxn−k

A+Bxn+Cxn−k

Lemma 4.2.1. The change of variables xn = γ
C
yn reduces Eq. (4.2.1)

to the difference equation

yn+1 =
yn−k

p+ qyn + yn−k
(4.2.16)

where p = A
γ
q = B

C
and the initial conditions y−k, . . . , y0 are arbitrary non-

negative real numbers.

Proof. Substitute xn = γ
C
yn in Eq. (4.2.1), to get

γ

C
yn+1 =

γγ
C
yn−k

A+ γB
C
yn + Cγ

C
yn−k
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then
yn+1 =

γyn−k

γ
[
A
γ

+ B
C
yn + yn−k

]
set p = A

γ
, q = B

C
to get Eq. (4.2.16).

The equilibrium points of Eq. (4.2.16) are ȳ = 0 and ȳ = 1−p
1+q

.

And the linearized equation

zn+1 +
qȳ

(p+ qȳ + ȳ)2
zn +−

(
p+ qȳ

(p+ qȳ + ȳ)2

)
zn−k = 0.

Theorem 4.2.1. The equilibrium point ȳ = 0 is locally stable when p > 1.
When p < 1 then the equilibrium point ȳ = 1−p

1+q
is unstable.

The proof follows immediately from Theorem (3.2.2).

Theorem 4.2.2. Let {yn}∞n=−k be a nonnegative solution of Eq. (4.2.16),
then the following are true:

• If k is even, then Eq. (4.2.16) has no solution of prime period two.

• If k is odd, then Eq. (4.2.16) has no solution of prime period two when
p > 1.

Proof. Let
. . . , φ, ψ, φ, ψ, . . .

be a period two solution of Eq. (4.2.16), where φ and ψ are positive and
distinct, then

• If k is even, then we have:

φ =
ψ

p+ qψ + ψ
and ψ =

φ

p+ qφ+ φ
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so, we obtain

p(φ− ψ) = ψ − φ =⇒ (φ− ψ)(p+ 1) = 0

as p 6= −1, then φ = ψ, and this is a contradiction.

• If k is odd, then we have

φ =
φ

p+ qψ + φ
and ψ =

ψ

p+ qφ+ ψ

hence,
(φ− ψ) [p+ (φ+ ψ)− 1] = 0

=⇒ φ+ ψ = 1− p when p > 1 then φ = ψ and this is a contradiction,
as φ, ψ are positive hence, φ = ψ.

So, Eq. (4.2.16) has no prime period two solution when k is odd and
p > 1 or k is even.

Theorem 4.2.3. Assume that p > 1 then the equilibrium point ȳ = 0 is
globally attractive.

Proof. Let

f(x, y) =
y

p+ qx+ y

where f : (0,∞)× (0,∞) −→ (0,∞) is continuous function.
As f(x, y) is decreasing in x and increasing in y, ∀ x, y ∈ (0,∞), then by
using Theorem (3.4.3), we can prove that the equilibrium point ȳ is globally
attractive.

Theorem 4.2.4. Every solution of Eq. (4.2.16) has semi cycles of length k.

Proof. As f(x, y) is decreasing in x and increasing in y, so by using
Theorem (3.3.4), we can prove that every solution of Eq. 4.2.16 has semi-
cycles of length k.
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4.2.2 The Case α=γ = 0 : xn+1 = βxn

A+Bxn+Cxn−k

Lemma 4.2.2. The change of variables xn = β
B
yn reduces Eq. (4.2.2)

to the difference equation

yn+1 =
yn

p+ qyn−k + yn
(4.2.17)

where p = A
β

, q = C
B

and the initial conditions y−k, . . . , y0 are arbitrary
nonnegative real numbers.

Proof. By substituting xn = β
B
yn in Eq. (4.2.2) we can get easily Eq. (4.2.17).

The equilibrium points of Eq. (4.2.17) are ȳ = 0 and ȳ = 1−p
1+q

.

And the linearized equation

zn+1 −
(

p+ qȳ

(p+ qȳ + ȳ)2

)
zn +

qȳ

(p+ qȳ + ȳ)2
zn−k = 0.

Theorem 4.2.5. The equilibrium point ȳ = 0 is locally stable when p > 1.
And the equilibrium point ȳ = 1−p

1+q
is unstable when p < 1.

The proof follows immediately from Theorem (3.2.2).

Theorem 4.2.6. The Eq. (4.2.17) has no solution of prime period two.

Proof. Let
. . . , φ, ψ, φ, ψ, . . .

be a period two solution of Eq. (4.2.17), where φ and ψ are positive and
distinct, then

• If k is even, then we have:

φ =
ψ

p+ qψ + ψ
and ψ =

φ

p+ qφ+ φ
. (4.2.18)



4 THE SPECIAL CASES αβγABC = 0 84

Simplifying the relation in (4.2.18), we get

p(φ− ψ) = ψ − φ =⇒ (φ− ψ)(p+ 1) = 0

since φ 6= ψ so we have p = −1, and this is a contradiction.

• If k is odd, then we have

φ =
ψ

p+ qφ+ ψ
and ψ =

φ

p+ qψ + φ
. (4.2.19)

Simplify the relation in (4.2.19), and we obtain

(φ− ψ) [p+ 1 + q(φ+ ψ)] = 0

since φ 6= ψ then we have φ + ψ = −(p+1)
q

, and this is a contradiction
as φ, ψ are positive hence φ = ψ

So, Eq. (4.2.17) has no solution of prime period two.

Theorem 4.2.7. Assume that p > 1 then the equilibrium point ȳ = 0 of
Eq. (4.2.17) is globally attractive.

Proof. Let

f(x, y) =
x

p+ qy + x

where f : (0,∞)× (0,∞) −→ (0,∞) is continuous function.
As f(x, y) is increasing in x and decreasing in y, ∀ x, y ∈ (0,∞), then by
using Theorem (3.4.1), we can prove that the equilibrium point ȳ is globally
attractive.

Theorem 4.2.8. Every solution of Eq. (4.2.17) has semi-cycles of length at
least k.

Proof. As f(x, y) is increasing in x and decreasing in y, then the proof fol-
lows immediately by using Theorem (3.3.3).
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4.2.3 The Case β=γ = 0 : xn+1 = α
A+Bxn+Cxn−k

Lemma 4.2.3. The change of variables xn =
√
α
yn

reduces Eq. (4.2.3) to the
difference equation

yn+1 = p+
β

yn
+

C

yn−k
(4.2.20)

where p = A√
α

and the initial conditions y−k, . . . , y0 are arbitrary nonnegative
real numbers.

Proof. Substitute xn =
√
α
yn

in Eq. (4.2.3) we obtain,

√
α

yn+1

=
α

A+ B
√
α

yn
+ C

√
α

yn−k

hence,
1

yn+1

=
1

A
α

+ B
yn

+ C
yn−k

so,

yn+1 =
A√
α

+
B

yn
+

C

yn−k

set, A√
α

= p we get Eq. (4.2.20).

The only positive equilibrium point of Eq. (4.2.20) is
ȳ = p+

√
p2 + 4(B + C).

And the linearized equation

zn+1 +
B

ȳ2
zn +

C

ȳ2
zn−k = 0.

Theorem 4.2.9. The equilibrium point ȳ = p+
√
p2 + 4(B + C) of Eq. (4.2.20)

is locally stable.

The proof follows immediately from Theorem (3.2.2).
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Theorem 4.2.10. Let {yn}∞n=−k be a nonnegative solution of Eq. (4.2.20),
then the following are true:

• If k is even, then Eq. (4.2.20) has no solution of prime period two.

• If k is odd, then Eq. (4.2.20) has prime period two solution and this
solution has the form

. . . , φ,
B − C
φ

, φ,
B − C
φ

, . . .

Proof. Let
. . . , φ, ψ, φ, ψ, . . .

be a period two solution of Eq. (4.2.20), where φ and ψ are positive and
distinct, then

• If k is even, then we have:

φ = p+
B

ψ
+
C

ψ
and ψ = p+

B

φ
+
C

φ
(4.2.21)

Simplifying the relation in (4.2.21), we obtain

p(ψ − φ) = 0 =⇒ φ = ψ

so, when k is even then the Eq. (4.2.20) has no solution of prime period
two.

• If k is odd, then we get

φ = p+
B

ψ
+
C

φ
and ψ = p+

B

φ
+
C

ψ
(4.2.22)

from relation (4.2.22) we get,

(φ− ψ) [φψ + C −B] = 0

since φ 6= ψ then ψ = B−C
φ

.
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So, when k is odd, then the prime period two solution of Eq. (4.2.20)
have the form.

. . . , φ,
B − C
φ

, φ,
B − C
φ

, . . .

and this complete the proof.

Theorem 4.2.11. The equilibrium point ȳ = p+
√
p2 + 4(B + C) of Eq. (4.2.20)

is globally attractive.

Proof. The function

f(x, y) = p+
B

x
+
C

y

is decreasing in both arguments, and the Eq. (4.2.20) has no solution of prime
period two when k is even, then by Theorem (3.4.2) the equilibrium point
ȳ is globally attractive.

Theorem 4.2.12. Every solution of Eq. (4.2.20) has semi-cycles of length
at most k.

Proof. As f(x, y) is decreasing in both arguments, then the proof follows
from Theorem (3.3.6).

4.2.4 The Case A=C = 0 : xn+1 = α+βxn+γxn−k

Bxn

Lemma 4.2.4. The Eq. (4.2.5) is reduced by the change of variables
xn = β

B
+ β

B
yn to the difference equation

yn+1 =
p+ qyn−k

1 + yn
(4.2.23)

where p = αB
β2 + γ

β
and q = γ

β
, and the initial conditions y−k, . . . , y0

are nonnegative real numbers.
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Proof. Set xn = β
B

+ β
B
yn,then substitute the value of xn in Eq. (4.2.5),

we get
β

B
yn+1 +

β

B
=
α + β β

B
[1 + yn] + γβ

B
[1 + yn−k]

Bβ
B

[1 + yn]

thus,

β

B
[1 + yn+1] =

β2

B

[
αB
β2 + (1 + yn) + γ

β
(1 + yn−k)

]
β [1 + yn]

=⇒ yn+1 =
(αB
β2 + γ

β
) + γ

β
yn−k

1 + yn
.

By letting, p = αB
β2 + γ

β
and q = γ

β
, we get Eq. (4.2.23).

The Eq. (4.2.23) was investigated in [9], by Douraki, Dehghan
and Razzaghi.

4.2.5 The Case B=A = 0 : xn+1 = α+βxn+γxn−k

Cxn−k

Lemma 4.2.5. The change of variables xn = γ
C

+ γ
C
yn reduces Eq. (4.2.6)

into equation

yn+1 =
p+ qyn
1 + yn−k

(4.2.24)

where p = αC+βγ
γ2 and q = β

γ
with p, q ∈ (0,∞) and the initial conditions

y−k, . . . , y0 are nonnegative real numbers.

Proof. Substitute xn = γ
C

+ γ
C
yn in Eq. (4.2.6)

we get
γ

C
+
γ

C
yn+1 =

α + β
[
γ
C

+ γ
C
yn
]

+ γ
[
γ
C

+ γ
C
yn−k

]
C γ
C

[yn−k + 1]

then

yn+1 =

αC
γ2 + β

γ
(1 + yn) + (1 + yn−k)

(yn−k + 1)
− 1

=⇒ yn+1 =

αC
γ2 + β

γ
(1 + yn)

yn−k + 1
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set p = αC+βγ
γ2 and q = β

γ
, we get Eq. (4.2.24).

The Eq. (4.2.24) was investigated in [7], by Dehghan and Sebdani.

Eq. (4.2.7) was investigated by S.Abu Baha in [1], and Eq. (4.2.8) was
investigated by A.Farhat in [13].

4.2.6 The Case α=C = 0 : xn+1 = βxn+γxn−k

A+Bxn

Lemma 4.2.6. The change of variables xn = β
B
yn, reduces Eq. (4.2.9)

to the difference equation

yn+1 =
yn + pyn−k
q + yn

(4.2.25)

where p = γ
β

and q = A
β

with p, q ∈ (0,∞) and the initial conditions
y−k, . . . , y0 are nonnegative real numbers.

Proof. Substitute xn = β
B
yn in Eq. (4.2.9),

we get
β

B
yn+1 =

β β
B
yn + γ β

B
yn−k

A+B β
B
yn

then

yn+1 =
β
[
yn + γ

β
yn−k

]
β
[
A
β

+ yn

] .

By, letting p = γ
β
and q = A

β
we get Eq. (4.2.25).

Eq. (4.2.25) was investigated in [23] by Dehghan and Sebdani.
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4.2.7 The Case β =A = 0 : xn+1 = α+γxn−k

Bxn+Cxn−k

Lemma 4.2.7. The change of variables xn = γ
C
yn reduces Eq. (4.2.10)

to the difference equation

yn+1 =
p+ yn−k
qyn + yn−k

(4.2.26)

where p = αC
γ2 and q = B

C
and the initial conditions y−k, . . . , y0 are nonnega-

tive real numbers.

Proof. Substitute xn = γ
C
yn in Eq. (4.2.10)

we get,
γ

C
yn+1 =

α + γ γ
C
yn−k

B γ
C
yn + C γ

C
yn−k

then

yn+1 =

αC
γ2 + yn−k
B
C
yn + yn−k

set p = αC
γ2 and q = B

C
, we get Eq. (4.2.26).

The Eq. (4.2.26) was investigated by Devalut, Ladas and Kosmala in [8].

4.2.8 The Case β =B = 0 : xn+1 = α+γxn−k

A+Cxn−k

Lemma 4.2.8. The change of variables xn = γ
C
yn reduces Eq. (4.2.11) to

the difference equation

yn+1 =
p+ yn−k
q + yn−k

(4.2.27)

where p = αC
γ2 and q = A

γ
and the initial conditions y−k, . . . , y0 are arbitrary

nonnegative real numbers.

Proof. Substitute xn = γ
C
yn in Eq. (4.2.11), to get

γ

C
yn+1 =

α + γγ
C
yn−k

A+ Cγ
C
yn−k
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then

yn+1 =
γ
[
αC
γ2 + yn−k

]
γ
[
A
γ

+ yn−k

]
set p = αC

γ2 and q = A
γ

to get Eq. (4.2.27).

The only positive equilibrium point of Eq. (4.2.27)

is ȳ =
(1−q)+

√
(q−1)2+4p

2
.

And the linearized equation

zn+1 −
(p− q)
(q − ȳ)2

zn−k = 0.

Theorem 4.2.13. The equilibrium point ȳ =
(1−q)+

√
(q−1)2+4p

2
is locally stable

when p > q.

The proof follows immediately from Theorem (3.2.2).

Theorem 4.2.14. Let {yn}∞n=−k be a nonnegative solution of Eq. (4.2.27), then
the following are true:

• If k is even, then Eq. (4.2.27) has no solution of prime period two.

• If k is odd and q < 1, then Eq. (4.2.27) has a solution of prime period
two of the form,

. . . , φ, 1− q − φ, φ, 1− q − φ, φ, . . .

Proof. Let
. . . , φ, ψ, φ, ψ, . . .

be a period two solution of Eq. (4.2.27), where φ and ψ are positive and
distinct, then
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• If k is even, then we have the following systems:

φ =
p+ ψ

q + ψ
and ψ =

p+ φ

q + φ
(4.2.28)

Simplifying Eq. (4.2.28) we obtain,

(φ− ψ) [q + 1] = 0

as q 6= −1, so φ = ψ.

• If k is odd, then we have

φ =
p+ φ

q + φ
and ψ =

p+ ψ

p+ ψ
(4.2.29)

simplifying the relation in Eq. (4.2.29) we get,

(φ− ψ) [q + (φ+ ψ)− 1] = 0

=⇒ φ + ψ = 1 − q when q > 1 then φ = ψ, and when q < 1 then
Eq. (4.2.27) has prime period two solution of the form

. . . , φ, 1− q − φ, φ, 1− q − φ, φ, . . .

4.2.9 The Case β =C = 0 : xn+1 = α+γxn−k

A+Bxn

Lemma 4.2.9. The change of variables xn = A
B
yn reduces Eq. (4.2.12)

to the difference equation

yn+1 =
p+ qyn−k

1 + yn
(4.2.30)

where p = αβ
A2 and q = γ

A
and the initial conditions y−k, . . . , y0 are nonneg-

ative real numbers.
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Proof. Substitute xn = A
B
yn in Eq. (4.2.12)

we get,
A

B
yn+1 =

α + γ A
B
yn−k

A+B A
B
yn

then

yn+1 =
αB
A2 + γ

A
yn−k

1 + yn

set p = αB
A2 and q = γ

A
, we get Eq. (4.2.30).

The Eq. (4.2.30) was investigated by M.J.Douraki, M.Dehghan and M.Razzaghi
in [9].

4.2.10 The Case γ = A = 0 : xn+1 = α+βxn

Bxn+Cxn−k

Lemma 4.2.10. The change of variables xn = β
B
yn reduces Eq. (4.2.13)

to the difference equation

yn+1 =
p+ yn

yn + qyn−k
(4.2.31)

where p = αβ
B2 and q = C

B
and the initial conditions y−k, . . . , y0 are nonneg-

ative real numbers.

Proof. Substitute xn = β
B
yn in Eq. (4.2.13)

we get,
β

B
yn+1 =

α + β β
B
yn

B β
B
yn + C β

B
yn−k

then

yn+1 =

αB
β2 + yn

yn + C
B
yn−k

set p = αB
β2 and q = C

B
, we get Eq. (4.2.31).

The Eq. (4.2.31) was investigated by M.J.Douraki and M.Dehghan in [5].
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4.2.11 The Case γ= B = 0 : xn+1 = α+βxn

A+Cxn−k

Lemma 4.2.11. The change of variables xn = A
C
yn reduces Eq. (4.2.14)

to the difference equation

yn+1 =
p+ qyn
1 + yn−k

(4.2.32)

where p = αC
A2 and q = B

A
and the initial conditions y−k, . . . , y0 are nonneg-

ative real numbers.

Proof. Substitute xn = A
C
yn in Eq. (4.2.14)

we get,
A

C
yn+1 =

α + β A
C
yn

A+ C A
C
yn−k

then

yn+1 =
αC
A2 + β

A
yn

1 + yn−k

set p = αC
A2 and q = β

A
we get Eq. (4.2.32).

The Eq. (4.2.32) was studied by M.Dehghan and M.Razzaghi in [7].



4 THE SPECIAL CASES αβγABC = 0 95

4.3 Three Parameters are zero

In this section we will study the character of solution of Eq. (3.1.1) where
three parameters are zero. There are eighteen cases for this equation, namely:

xn+1 =
α + βxn

A
, n = 0, 1, 2, . . . (4.3.1)

xn+1 =
α + βxn
Bxn

, n = 0, 1, 2, . . . (4.3.2)

xn+1 =
α + βxn
Cxn−k

, n = 0, 1, 2, . . . (4.3.3)

xn+1 =
βxn + γxn−k

A
, n = 0, 1, 2, . . . (4.3.4)

xn+1 =
βxn + γxn−k

Bxn
, n = 0, 1, 2, . . . (4.3.5)

xn+1 =
βxn + γxn−k

Cxn−k
, n = 0, 1, 2, . . . (4.3.6)

xn+1 =
α + γxn−k

A
, n = 0, 1, 2, . . . (4.3.7)

xn+1 =
α + γxn−k
Bxn

, n = 0, 1, 2, . . . (4.3.8)

xn+1 =
α + γxn−k
Cxn−k

, n = 0, 1, 2, . . . (4.3.9)

xn+1 =
α

Bxn + Cxn−k
, n = 0, 1, 2, . . . (4.3.10)

xn+1 =
α

A+Bxn
, n = 0, 1, 2, . . . (4.3.11)

xn+1 =
α

A+ Cxn−k
, n = 0, 1, 2, . . . (4.3.12)

xn+1 =
βxn

A+Bxn
, n = 0, 1, 2, . . . (4.3.13)

xn+1 =
βxn

A+ Cxn−k
, n = 0, 1, 2, . . . (4.3.14)

xn+1 =
βxn

Bxn + Cxn−k
, n = 0, 1, 2, . . . (4.3.15)
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xn+1 =
γxn−k

Bxn + Cxn−k
, n = 0, 1, 2, . . . (4.3.16)

xn+1 =
γxn−k
A+Bxn

, n = 0, 1, 2, . . . (4.3.17)

xn+1 =
γxn−k

A+ Cxn−k
, n = 0, 1, 2, . . . (4.3.18)

Where the parameters α, β, γ and A, B, C are non-negative real numbers
and the initial conditions x−k, . . . , x−1, x0 are arbitrary real numbers, and the
denominator is nonzero.

Of these equations, Eqs. (4.3.1), (4.3.4) and (4.3.7) are linear difference
equation. Eq. (4.3.2) is a Riccati equation.

4.3.1 The Case γ= A= B = 0 : xn+1 = α+βxn

Cxn−k

Lemma 4.3.1. The change of variables xn = β
C
yn reduces Eq. (4.3.3)

to the difference equation

yn+1 =
p+ yn
yn−k

(4.3.19)

where p = αC
β2 , and the initial conditions y−k, . . . , y0 are arbitrary nonnegative

real numbers.

Proof. Substitute xn = β
C
yn in Eq. (4.3.3), we get

β

C
yn+1 =

α + ββ
C
yn

C β
C
yn−k

.

Then

yn+1 =
β
[
αC
β2 + yn

]
βyn−k

set, p = αC
β2 we get Eq. (4.3.19)

The Eq. (4.3.19) was studied by Alaweneh in [3].
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4.3.2 The Case α =A =C = 0 : xn+1 = βxn+γxn−k

Bxn

Lemma 4.3.2. The change of variables xn = γ
B
yn reduces Eq. (4.3.5)

to the difference equation

yn+1 = p+
yn−k
yn

(4.3.20)

where p = β
γ

, and the initial conditions y−k, . . . , y0 are arbitrary nonnegative
real numbers.

Proof. Substitute xn = γ
B
yn in Eq. (4.3.5), to get

γ

B
yn+1 =

β γ
β
yn + γ γ

B
yn−k

B γ
B
yn

then

yn+1 =

β
γ
yn + yn−k

yn
=⇒ β

γ
+
yn−k
yn

set p = β
γ

to get Eq. (4.3.20).

The Eq. (4.3.20) was investigated in [19] by M.Saleh and M.Aloqeili, and
in [15] by W.S.He and X.X.Yan.

4.3.3 The Case α =A= B = 0 : xn+1 = βxn+γxn−k

Cxn−k

Lemma 4.3.3. The change of variables xn = β
C
yn reduces Eq. (4.3.6)

to the difference equation

yn+1 = p+
yn
yn−k

(4.3.21)

where p = γ
B

, and the initial conditions y−k, . . . , y0 are nonnegative real num-
bers.

Proof. Substitute xn = β
C
yn in Eq. (4.3.6) to get:

β

C
yn+1 =

β β
C
yn + γ β

C
yn−k

C β
C
yn−k

then

yn+1 =
yn + γ

β
yn−k

yn−k
=⇒ yn+1 =

yn
yn−k

+
γ

β
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set p = γ
β
, we get Eq. (4.3.21).

The Eq. (4.3.21) was studied by M.Saleh and M.Aloqeili in [20].

4.3.4 The Case β = A = C = 0 : xn+1 = α+γxn−k

Bxn

Lemma 4.3.4. The change of variables xn = γ
B
yn reduces Eq. (4.3.8)

to the difference equation

yn+1 =
p+ yn−k

yn
(4.3.22)

where p = αβ
γ2 ∈ (0,∞), and the initial conditions y−k, . . . , y0 are arbitrary

nonnegative real numbers.

Proof. Substituting xn = γ
B
yn into Eq. (4.3.8), we can easily get Eq. (4.3.22)

Alaweneh in [3] investigated this equation.

4.3.5 The Case β =A =B = 0 : xn+1 = α+γxn−k

Cxn−k

Lemma 4.3.5. The change of variables xn = γ
C
yn reduces Eq. (4.3.9) to the

difference equation

yn+1 =
p+ yn−k
yn−k

(4.3.23)

where p = αC
γ2 , and the initial conditions y−k, . . . , y0 are arbitrary nonnegative

real numbers.

Proof. Substitute xn = γ
C
yn in Eq. (4.3.9), to get

γ

C
yn+1 =

α + γγ
C
yn−k

Cγ
C
yn−k
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then

yn+1 =
γ
[
αC
γ2 + yn−k

]
γyn−k

set p = αC
γ2 to get Eq. (4.3.23).

The only positive equilibrium point of Eq. (4.3.23) is
ȳ = 1 +

√
1 + 4p.

And the linearized equation

zn+1 +
p

ȳ2
zn−k = 0.

Theorem 4.3.1. The equilibrium point ȳ = 1 +
√

1 + 4p is locally stable.

The proof follows from Theorem (3.2.2).

4.3.6 The Case β = γ =A = 0 : xn+1 = α
Bxn+Cxn−k

Lemma 4.3.6. The change of variables xn =
√
α
yn

reduces Eq. (4.3.10)
to the difference equation

yn+1 =
B

yn
+

C

yn−k
(4.3.24)

where the initial conditions y−k, . . . , y0 are non negative real numbers.

Proof. By Substituting xn =
√
α
yn

into Eq. (4.3.10) we can get Eq. (4.3.24).

A.E.Alweneh studied Eq. (4.3.24) in [3].
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4.3.7 The Case β = γ= C = 0 : xn+1 = α
A+Bxn

By the change of variables xn = A
B
yn Eq. (4.3.11) reduces to Riccati equation

yn+1 =
p

1 + yn
n = 0, 1, . . . (4.3.25)

Where p = αβ
A2 , p ∈ (0,∞)

Theorem 4.3.2. The positive equilibrium point

ȳ =
−1 +

√
1 + 4p

2

of Eq. (4.3.25) is globally asymptotically stable.

4.3.8 The Case β = γ = B = 0 : xn+1 = α
A+Cxn−k

Lemma 4.3.7. The change of variables xn =
√
α
yn

, reduces Eq. (4.3.12)
to the difference equation

yn+1 = p+
C

yn−k
n = 0, 1, . . . (4.3.26)

where p = A√
α

, and the initial conditions y−k, . . . , y0 are arbitrary nonnega-
tive real numbers.

Proof. Substitute xn =
√
α
yn

, we get

√
α

yn+1

=
α

A+ C
√
α

yn−k

=⇒ 1

yn+1

=
1

A√
α

+ C
yn−k

hence,

yn+1 =
A√
α

+
C

yn−k

set p = A√
α

, we get Eq. (4.3.26).
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The only positive equilibrium point is

ȳ =
p+

√
p2 + 4C

2
.

And the linearized equation of this equilibrium point is

zn+1 +
C

ȳ2
zn−k = 0.

Theorem 4.3.3. The equilibrium point ȳ =
p+
√
p2+4C

2
is locally stable.

The proof follows immediately from Theorem (3.2.2)

Theorem 4.3.4. Let {yn}∞n=−k be a non negative solution of Eq. (4.3.26),
then the following are true.

• If k is even, then Eq. (4.3.26) has no solution of prime period two.

• If k is odd, then Eq. (4.3.26) has prime period two solution, and this
solution take the form

. . . , φ, p− φ, φ, p− φ, . . .

Proof. Let
. . . , φ, ψ, φ, ψ, . . .

be a period two solution of the Eq. (4.3.26) where φ, ψ are positive and
distinct, then

• If k is even, then we have

φ = p+
C

ψ
and ψ = p+

C

φ

then pφ+C = pψ+C =⇒ pφ = pψ =⇒ φ = ψ which is a contradiction.
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• If k is odd, then

φ = p+
C

φ
and ψ = p+

C

ψ

then we get, (φ− ψ) [φ+ ψ − p] = 0
when φ 6= ψ, this implies that φ + ψ = p so the period two solution
must be of the form

. . . , φ, p− φ, φ, p− φ, . . .

which is complete the proof.

4.3.9 The Case α = γ =C = 0 : xn+1 = βxn

A+Bxn

The change of variables xn = 1
yn

reduces Riccati Eq. (4.3.13) to the linear
equation

yn+1 =
A

β
yn +

B

β
, n = 0, 1, . . . . (4.3.27)

and Eq. (4.3.27) is linear first order difference equation.

4.3.10 The Case α = γ = B = 0 : xn+1 = βxn

A+Cxn−k

Lemma 4.3.8. The change of variables xn = β
C
yn reduces Eq. (4.3.14)

to the difference equation

yn+1 =
yn

p+ yn−k
(4.3.28)

where p = A
β

, and the initial conditions y−k, . . . , y0 are arbitrary nonnegative
real numbers.

Proof. Substitute xn = β
C
yn in Eq. (4.3.14), to get

β

C
yn+1 =

ββ
C
yn

A+ Cβ
C
yn−k
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then

yn+1 =
βyn

β
[
A
β

+ yn−k

]
set p = A

β
to get Eq. (4.3.28).

The Eq. (4.3.28) has two equilibrium points ȳ = 0 and ȳ = 1− p.

And the linearized equation

zn+1 −
(p+ ȳ)

(p+ ȳ)2
zn +

ȳ

(p+ ȳ)2
zn−k = 0.

Theorem 4.3.5. When p > 1 then the equilibrium point ȳ = 0 is locally
stable.

The proof follows immediately from Theorem (3.2.2).

Theorem 4.3.6. The Eq. (4.3.28) has no solution of prime period two.

Proof. Let
. . . , φ, ψ, φ, ψ, . . .

be a period two solution of Eq. (4.3.28), where φ and ψ are two arbitrary
positive and distinct real numbers.

• If k is odd, then yn+1 = yn−k and φ, ψ satisfy the following systems:

φ =
ψ

p+ φ
and ψ =

φ

p+ ψ
(4.3.29)

simplifying the relation in Eq. (4.3.29) to get,

(ψ − φ) [p+ (φ+ ψ) + 1] = 0

=⇒ φ+ ψ = −(1 + p) and this impossible.

So φ = ψ.
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• If k is even, then yn = yn−k and φ, ψ satisfy the following systems:

φ =
ψ

p+ ψ
and ψ =

φ

p+ φ
(4.3.30)

Simplifying Eq. (4.3.30), we obtain

(φ− ψ) [p+ 1] = 0

p 6= −1, so φ = ψ.

The proof is complete.

Theorem 4.3.7. When p > 1 then the equilibrium point ȳ = 0 of Eq. (4.3.28)
is globally attractive.

Proof. As the function

f(x, y) =
x

p+ y

is increasing in x, and decreasing in y, ∀ x, y ∈ (0,∞) and
(µ,m) is a solution of the system

f(m,µ) = m and f(µ,m) = µ

then µ = m.
By using Theorem (3.4.1), the equilibrium point ȳ = 0 is globally attractive.

Theorem 4.3.8. Every oscillatory solution of Eq. (4.3.28) has semi-cycles
of length at least k.

Proof. As the function f(x, y) is increasing in x, and decreasing in y,
so the proof follows immediately from Theorem (3.3.3).
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4.3.11 The Case α = γ =A = 0 : xn+1 = βxn

Bxn+Cxn−k

Lemma 4.3.9. The change of variables xn = β
Cyn

reduces Eq. (4.3.15)
to the difference equation

yn+1 = p+
yn
yn−k

(4.3.31)

where p = B
C

and the initial conditions y−k, . . . , y0 are nonnegative real num-
bers.

Proof. Substitute xn = β
Cyn

in Eq. (4.3.15)
we get,

β

Cyn+1

=
β β
Cyn

B β
Cyn

+ β
yn−k

then
1

yn+1

=

1
yn

B
Cyn

+ 1
yn−k

=⇒ yn+1 =
B

C
+

yn
yn−k

.

By setting p = B
C

, we get Eq. (4.3.31).

The Eq. (4.3.31) was investigated by M.Saleh and M.Aloqeili in [20]

4.3.12 The Case α = β =A = 0 : xn+1 = γxn−k

Bxn+Cxn−k

Lemma 4.3.10. The change of variables xn = γ
Byn

reduces Eq. (4.3.16)
to the difference equation

yn+1 = p+
yn−k
yn

(4.3.32)

where p = C
B

and the initial conditions y−k, . . . , y0 are non negative real num-
bers.

Proof. Substitute xn = γ
Byn

in Eq. (4.3.16)
we get,

γ

Byn+1

=
γ γ
Byn−k

B γ
Byn

+ C γ
Byn−k
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then
1

yn+1

=

1
yn−k

C
Byn−k

+ 1
yn

=⇒ yn+1 =
C

B
+
yn−k
yn

set p = C
B

, we get Eq. (4.3.32).

The Eq. (4.3.32) was studied in [15] by W.He and X.X.Yan, also in [19]
by M.Saleh and Aloqeili.

4.3.13 The Case α = β =C = 0 : xn+1 = γxn−k

A+Bxn

Lemma 4.3.11. The change of variables xn = γ
B
yn reduces Eq. (4.3.17)

to the difference equation

yn+1 =
yn−k
p+ yn

(4.3.33)

where p = A
γ

, and the initial conditions y−k, . . . , y0 are arbitrary nonnegative
real numbers.

Proof. Substitute xn = γ
B
yn in Eq. (4.3.17), to get

γ

B
yn+1 =

γγ
B
yn−k

A+ Bγ
B
yn

then
yn+1 =

γyn−k

γ
[
A
γ

+ yn

]
set p = A

γ
to get Eq. (4.3.33).

The Eq. (4.3.33) has two equilibrium points ȳ = 0 and ȳ = 1− p.

And the linearized equation

zn+1 +
ȳ

(p+ ȳ)2
zn −

(p+ ȳ)

(p+ ȳ)2
zn−k = 0.
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Theorem 4.3.9. The equilibrium point ȳ = 0 is locally stable when p > 1.

The proof follows immediately from Theorem (3.2.2).

Theorem 4.3.10. The Eq. (4.3.33) has no solution of prime period two.

Proof. The proof is the same as proof Theorem (4.3.6), so is omitted.

Theorem 4.3.11. Assume that p > 1 then the equilibrium point ȳ = 0 of
Eq. (4.3.33) is globally attractive.

Proof. Let the function

f(x, y) =
y

p+ x

where f : (0,∞)× (0,∞) −→ (0,∞) is continuous function,
as f(x, y) is decreasing in x, and increasing in y, ∀ x, y ∈ (0,∞) and the
difference equation has no solution of prime period two in (0,∞). Then by
using Theorem (3.4.3), the equilibrium point ȳ = 0 is global attractive.

Theorem 4.3.12. Every oscillatory solution of Eq. (4.3.33) has semi-cycles
of length k.

Proof. As the function f(x, y) is decreasing in x, and increasing in y, so the
proof follows immediately from Theorem (3.3.4).

4.3.14 The Case α = β= B = 0 : xn+1 = γxn−k

A+Cxn−k

Lemma 4.3.12. The change of variables xn = γ
C
yn reduces Eq. (4.3.18) to

the difference equation

yn+1 =
yn−k

p+ yn−k
(4.3.34)

where p = A
γ

, and the initial conditions y−k, . . . , y0 are arbitrary nonnegative
real numbers.
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Proof. Substitute xn = γ
C
yn in Eq. (4.3.18), to get

γ

C
yn+1 =

γγ
C
yn−k

A+ Cγ
C
yn−k

then
yn+1 =

γyn−k

γ
[
A
γ

+ yn−k

]
set p = A

γ
to get Eq. (4.3.34)

The Eq. (4.3.34) has two equilibrium points ȳ = 0 and ȳ = 1− p.

And the linearized equation

zn+1 −
p

(p+ ȳ)2
zn−k = 0.

Theorem 4.3.13. Assume that p > 1 then the equilibrium point ȳ = 0 is
locally stable.

The proof follows immediately from Theorem (3.2.2).

Theorem 4.3.14. The Eq. (4.3.34) has no solution of prime period two.

Proof. Let
. . . , φ, ψ, φ, ψ, . . .

be a period two solution of Eq. (4.3.34), where φ and ψ are two arbitrary
positive and distinct real numbers.

• If k is odd, then yn+1 = yn−k and φ, ψ satisfy the following systems:

φ =
φ

p+ φ
and ψ =

ψ

p+ ψ
(4.3.35)

simplifying the relation in Eq. (4.3.35) to get,

(φ− ψ) [p+ (φ+ ψ)− 1] = 0
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=⇒ φ + ψ = 1 − p when p > 1 then φ + ψ is negative and this
impossible.

So φ = ψ.

• If k is even, then yn = yn−k and φ, ψ satisfy the following systems:

φ =
ψ

p+ ψ
and ψ =

φ

p+ φ
. (4.3.36)

Simplifying Eq. (4.3.36), we obtain

(φ− ψ) [p+ 1] = 0

as p 6= −1, so φ = ψ.

The proof is complete.
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4.4 Four Parameters are zero

In this section we will study the character of solution of Eq. (3.1.1) where
four parameters are zero. There are (9)cases for this equation, namely:

xn+1 =
γxn−k
Cxn−k

, n = 0, 1, 2, . . . (4.4.1)

xn+1 =
α

A
, n = 0, 1, 2, . . . (4.4.2)

xn+1 =
βxn
Bxn

, n = 0, 1, 2, . . . (4.4.3)

xn+1 =
α

Bxn
, n = 0, 1, 2, . . . (4.4.4)

xn+1 =
α

Cxn−k
, n = 0, 1, 2, . . . (4.4.5)

xn+1 =
βxn
A

, n = 0, 1, 2, . . . (4.4.6)

xn+1 =
βxn
Cxn−k

, n = 0, 1, 2, . . . (4.4.7)

xn+1 =
γxn−k
A

, n = 0, 1, 2, . . . (4.4.8)

xn+1 =
γxn−k
Bxn

, n = 0, 1, 2, . . . (4.4.9)

Where the parameters α, β, γ and A, B, C are non-negative real numbers
and the initial conditions x−k, . . . , x−1, x0 are arbitrary real numbers, and the
denominator is nonzero.

Of these nine equations, Eqs. (4.4.1), (4.4.2) and (4.4.3) are trivial.

Eqs. (4.4.6) and (4.4.8) are linear difference equations.

Every solution of Eq. (4.4.4) is periodic with period two, and every
solution of Eq. (4.4.5) is periodic with period 2(k + 1). So, we just study
Eqs. (4.4.7) and (4.4.9).
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4.4.1 The case α= γ =A =B = 0 : xn+1 = βxn

Cxn−k

By the change of variables xn = β
C
eyn Eq. (4.4.7) reduces to the difference

equation
yn+1 = yn − yn−k (4.4.10)

when k = 1, then every positive solution of Eq. (4.4.10) is periodic with
period six, and its solution is:

. . . , x−1, x0,
x0

x−1

,
1

x−1

,
1

x0

,
x−1

x0

, . . .

also, when k = 1, the following difference equation

yn+1 + yn−k − yn = 0

has a general solution

yn = (1)n
[
c1 cos

nπ

3
+ c2 sin

nπ

3

]
where r = 1, and θ = π

3
.

Lemma 4.4.1. The equilibrium point of Eq. (4.4.10) is unstable when k ≥ 2.

The proof is consequently from Theorem (3.2.2).

4.4.2 The case α =β =C =A = 0 : xn+1 = γxn−k

Bxn

The change of variables xn = γ
B
eyn reduces Eq. (4.4.9) to the difference

equation
yn+1 − yn−k + yn n = 0, 1, . . . (4.4.11)

this transformation, substitute xn = γ
B
eyn in Eq. (4.4.9), so we get

γ

B
eyn+1 =

γ

B

eyn−k

eyn

cancel γ
B

from both side, we obtain

eyn+1 =
eyn−k

eyn
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then
eyn+1 = eyn−ke−yn =⇒ yn+1 − yn−k + yn
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when k = 1, then the following difference equation

yn+1 − yn−k + yn = 0

has a general solution

yn = c1

(
−1 +

√
5

2

)n

+ c2

(
−1−

√
5

2

)n

Lemma 4.4.2. The equilibrium point of Eq. (4.4.11) is unstable when k ≥ 2.

The proof is consequently from Theorem (3.2.2).
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4.5 Numerical Analysis

To illustrate the results of the previous chapters and to support our theoret-
ical discussion, we will consider a few numerical examples in this section.
These examples represent different types of qualitative behavior of solutions
to nonlinear difference equations.

Example 4.5.1. Consider the third order difference equation when k=2
in Eq. (3.2.1):

yn+1 =
p+ yn + Lyn−k
q + yn + dyn−k

.

And assume that p=9, q=5, L=3 and d=4. So the equation will be
reduced to the following:

yn+1 =
9 + yn + 3yn−2

5 + yn + 4yn−2

.

We assume the initial points {y−2, y−1, y0} are {.3, .1, .8}.
Then, the results is below.

>> diffequation

---------

First: Input The Constants Values Of Your Difference Equation

The value of the positive parameters p= 9\\

The value of the positive parameters l= 3\\

The value of the positive parameters q= 5\\

The value of the positive parameters d=4

---------

Second: Input The value of k

k= 2

---------

Third: Enter the initial conditions of Diff.Equation
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Enter the value of y

y=.3

Enter the value of y

y=.1

Enter the value of y

y=.8

-------

The results are:

________________________________________________________________________________

n y(n) n y(n) n y(n) n y(n)

_______________________________________________________________________________

1.0000 0.3000 26.0000 1.6016 51.0000 1.6026 76.0000 1.6026

2.0000 0.1000 27.0000 1.6000 52.0000 1.6027 77.0000 1.6026

3.0000 0.8000 28.0000 1.6124 53.0000 1.6026 78.0000 1.6026

4.0000 4.6522 29.0000 1.6026 54.0000 1.6026 79.0000 1.6026

5.0000 2.7080 30.0000 1.6040 55.0000 1.6026 80.0000 1.6026

6.0000 2.1032 31.0000 1.5975 56.0000 1.6026 81.0000 1.6026

7.0000 0.9880 32.0000 1.6030 57.0000 1.6026 82.0000 1.6026

8.0000 1.2467 33.0000 1.6019 58.0000 1.6026 83.0000 1.6026

9.0000 1.4075 34.0000 1.6054 59.0000 1.6026 84.0000 1.6026

10.0000 2.1066 35.0000 1.6023 60.0000 1.6026 85.0000 1.6026

11.0000 1.7802 36.0000 1.6030 61.0000 1.6026 86.0000 1.6026

12.0000 1.7014 37.0000 1.6012 62.0000 1.6026 87.0000 1.6026

13.0000 1.3913 38.0000 1.6029 63.0000 1.6026 88.0000 1.6026

14.0000 1.5285 39.0000 1.6024 64.0000 1.6026 89.0000 1.6026

15.0000 1.5577 40.0000 1.6034 65.0000 1.6026 90.0000 1.6026

16.0000 1.7303 41.0000 1.6024 66.0000 1.6026 91.0000 1.6026

17.0000 1.6341 42.0000 1.6028 67.0000 1.6026 92.0000 1.6026

18.0000 1.6245 43.0000 1.6022 68.0000 1.6026 93.0000 1.6026

19.0000 1.5391 44.0000 1.6028 69.0000 1.6026 94.0000 1.6026

20.0000 1.5903 45.0000 1.6026 70.0000 1.6026 95.0000 1.6026

21.0000 1.5921 46.0000 1.6028 71.0000 1.6026 96.0000 1.6026

22.0000 1.6376 47.0000 1.6025 72.0000 1.6026 97.0000 1.6026

23.0000 1.6069 48.0000 1.6027 73.0000 1.6026 98.0000 1.6026

24.0000 1.6079 49.0000 1.6025 74.0000 1.6026 99.0000 1.6026

25.0000 1.5844 50.0000 1.6027 75.0000 1.6026 100.0000 1.6026
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-------

Some Analysis Of The Results:

1- As K is even, there is no positive period two solutions

2- Since (p+l)>(q+d), p >q & d >l Then The Following Are True:

(a) The Equilibrium point is asymptotically stable

(b) = = = is globally asymptotically stable

-------

The End
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Figure 4.5.1: Plot of yn+1 = 9+yn+3yn−2

5+yn+4yn−2

Example 4.5.2. Consider the second order difference equation when k=1
in Eq. (3.2.1):

yn+1 =
p+ yn + Lyn−k
q + yn + dyn−k

.

And assume that p=2, q=7, L=6 and d=1. So the equation will be
reduced to the following:

yn+1 =
2 + yn + 6yn−1

7 + yn + 1yn−1

.

We assume the initial points {y−1, y0} are {.9, 2.3}.
Then, the results is below.

>> diffequation

---------

First: Input The Constants Values Of Your Difference Equation



4 THE SPECIAL CASES αβγABC = 0 118

The value of the positive parameters p= 2 \\

The value of the positive parameters l= 6 \\

The value of the positive parameters q= 7\\

The value of the positive parameters d= 1

---------

Second: Input The value of k

k= 1

---------

Third: Enter the initial conditions of Diff.Equation

Enter the value of y

y=.9

Enter the value of y

y=2.3

-------

The results are:

________________________________________________________________________________

n y(n) n y(n) n y(n) n y(n)

_______________________________________________________________________________

1.0000 0.9000 26.0000 1.1019 51.0000 1.1019 76.0000 1.1019

2.0000 2.3000 27.0000 1.1019 52.0000 1.1019 77.0000 1.1019

3.0000 1.1279 28.0000 1.1019 53.0000 1.1019 78.0000 1.1019

4.0000 0.9826 29.0000 1.1019 54.0000 1.1019 79.0000 1.1019

5.0000 1.0982 30.0000 1.1019 55.0000 1.1019 80.0000 1.1019

6.0000 1.1276 31.0000 1.1019 56.0000 1.1019 81.0000 1.1019

7.0000 1.1023 32.0000 1.1019 57.0000 1.1019 82.0000 1.1019

8.0000 1.0970 33.0000 1.1019 58.0000 1.1019 83.0000 1.1019

9.0000 1.1019 34.0000 1.1019 59.0000 1.1019 84.0000 1.1019

10.0000 1.1028 35.0000 1.1019 60.0000 1.1019 85.0000 1.1019

11.0000 1.1019 36.0000 1.1019 61.0000 1.1019 86.0000 1.1019

12.0000 1.1017 37.0000 1.1019 62.0000 1.1019 87.0000 1.1019

13.0000 1.1019 38.0000 1.1019 63.0000 1.1019 88.0000 1.1019

14.0000 1.1019 39.0000 1.1019 64.0000 1.1019 89.0000 1.1019

15.0000 1.1019 40.0000 1.1019 65.0000 1.1019 90.0000 1.1019

16.0000 1.1019 41.0000 1.1019 66.0000 1.1019 91.0000 1.1019

17.0000 1.1019 42.0000 1.1019 67.0000 1.1019 92.0000 1.1019

18.0000 1.1019 43.0000 1.1019 68.0000 1.1019 93.0000 1.1019
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19.0000 1.1019 44.0000 1.1019 69.0000 1.1019 94.0000 1.1019

20.0000 1.1019 45.0000 1.1019 70.0000 1.1019 95.0000 1.1019

21.0000 1.1019 46.0000 1.1019 71.0000 1.1019 96.0000 1.1019

22.0000 1.1019 47.0000 1.1019 72.0000 1.1019 97.0000 1.1019

23.0000 1.1019 48.0000 1.1019 73.0000 1.1019 98.0000 1.1019

24.0000 1.1019 49.0000 1.1019 74.0000 1.1019 99.0000 1.1019

25.0000 1.1019 50.0000 1.1019 75.0000 1.1019 100.0000 1.1019

-------

Some Analysis Of The Results:

1- The Equilibrium Point Of This Equation =1.0000

there is a prime period two solution

-------

The End

>>
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Figure 4.5.2: Plot of yn+1 = 2+yn+6yn−1

7+yn+1yn−1

Example 4.5.3. Consider the fourth order difference equation when k=3
in Eq. (3.2.1):

yn+1 =
p+ yn + Lyn−k
q + yn + dyn−k

.

And assume that p=6, q=5, L=7 and d=10. So the equation will be
reduced to the following:

yn+1 =
6 + yn + 7yn−3

5 + yn + 10yn−3

.

We assume the initial points {y−3, y−2, y−1, y0} are {1, .4, .28, 0}.
Then, the results is below.

>> diffequation

---------

First: Input The Constants Values Of Your Difference Equation
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The value of the positive parameters p= 6

The value of the positive parameters l= 7

The value of the positive parameters q= 5

The value of the positive parameters d= 10

---------

Second: Input The value of k

k= 3

---------

Third: Enter the initial conditions of Diff.Equation

Enter the value of y

y=1

Enter the value of y

y=.4

Enter the value of y

y=.28

Enter the value of y

y=0

-------

The results are:

________________________________________________________________________________

n y(n) n y(n) n y(n) n y(n)

_______________________________________________________________________________

1.0000 1.0000 26.0000 1.8686 51.0000 1.8685 76.0000 1.8685

2.0000 0.4000 27.0000 1.8683 52.0000 1.8685 77.0000 1.8685

3.0000 0.2800 28.0000 1.8682 53.0000 1.8685 78.0000 1.8685

4.0000 0 29.0000 1.8687 54.0000 1.8685 79.0000 1.8685

5.0000 2.6000 30.0000 1.8685 55.0000 1.8685 80.0000 1.8685

6.0000 2.4783 31.0000 1.8686 56.0000 1.8685 81.0000 1.8685

7.0000 2.6915 32.0000 1.8686 57.0000 1.8685 82.0000 1.8685

8.0000 3.2293 33.0000 1.8685 58.0000 1.8685 83.0000 1.8685

9.0000 1.6901 34.0000 1.8685 59.0000 1.8685 84.0000 1.8685

10.0000 1.7781 35.0000 1.8685 60.0000 1.8685 85.0000 1.8685

11.0000 1.7471 36.0000 1.8685 61.0000 1.8685 86.0000 1.8685

12.0000 1.6963 37.0000 1.8685 62.0000 1.8685 87.0000 1.8685

13.0000 1.9244 38.0000 1.8685 63.0000 1.8685 88.0000 1.8685

14.0000 1.8836 39.0000 1.8685 64.0000 1.8685 89.0000 1.8685
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15.0000 1.8941 40.0000 1.8685 65.0000 1.8685 90.0000 1.8685

16.0000 1.9053 41.0000 1.8685 66.0000 1.8685 91.0000 1.8685

17.0000 1.8544 42.0000 1.8685 67.0000 1.8685 92.0000 1.8685

18.0000 1.8665 43.0000 1.8685 68.0000 1.8685 93.0000 1.8685

19.0000 1.8634 44.0000 1.8685 69.0000 1.8685 94.0000 1.8685

20.0000 1.8613 45.0000 1.8685 70.0000 1.8685 95.0000 1.8685

21.0000 1.8721 46.0000 1.8685 71.0000 1.8685 96.0000 1.8685

22.0000 1.8687 47.0000 1.8685 72.0000 1.8685 97.0000 1.8685

23.0000 1.8696 48.0000 1.8685 73.0000 1.8685 98.0000 1.8685

24.0000 1.8699 49.0000 1.8685 74.0000 1.8685 99.0000 1.8685

25.0000 1.8677 50.0000 1.8685 75.0000 1.8685 100.0000 1.8685

-------

Some Analysis Of The Results:

- Since (p+l)<(q+d), p >q & d >l Then The Following Are True:

(a) The Equilibrium point is asymptotically stable

(b) = = = is globally asymptotically stable

-------

The End

>>
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Figure 4.5.3: Plot of yn+1 = 6+yn+7yn−3

5+yn+10yn−3

5 Matlab Code 7.1

The mfile function investigate the nonlinear rational difference equation:

yn+1 =
p+ yn + Lyn−k
q + yn + dyn−2

.

Where the parameters p, q, L and d and the initial conditions are non neg-
ative real numbers.

We create this file to find the computational solution and to compare be-
tween the theoretical approach, and computational approach.

%Dynamical Of Non Linear Difference Equation

%Ayah Asad

%program 1

clear all

format short

%#######################

disp(’ --------- ’);
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fprintf(’\n

First: Input The Constants Values Of Your Difference Equation \n’)

disp(’ ’)

p=input(’The value of the positive parameters p= ’);

l=input(’The value of the positive parameters l= ’);

q=input(’The value of the positive parameters q= ’);

d=input(’The value of the positive parameters d= ’);

disp(’ --------- ’);

k=input(’Second: Input The value of k \n k= ’);

disp(’ --------- ’);

fprintf(1,’\n Third: Enter the initial conditions of the

Diff.Equation\n ’)

disp(’ ’);

%########################

ans=pqdlk(p,q,d,l,k); disp(’ ------- ’)

disp(’The results are: ’)

disp(’________________________________________________________________________________’)

disp(’ n y(n) n y(n) n y(n) n

y(n)’)

disp(_______________________________________________________________________________’)

D=[ans(1:25,:),ans(26:50,:),ans(51:75,:),ans(76:100,:)]; disp(D)

disp(’ ------- ’);

disp(’Some Analysis Of The Results:’)

if rem(k,2)==0

fprintf(’\n 2- As K is even ,there is no positive period two solutions \n ’)

else

if l<(1+q)

if d >1

fprintf(’\n 2- As l<1+q ,d>1 & K is odd, there is no positive

period two solution \n’)

else

fprintf(’there is a prime period two solution’)

end

end
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end

EI=(p+l)/(d+q);

disp(’ ’)

if (p+l)>(q+d)

if p>q

if d > l

disp(’3- Since (p+l)>(q+d), p >q & d >l’)

disp(’Then The Following is True:’)

fprintf(’\n (b) = = = is globally asymptotically stable ’)

fprintf(’\n (b) = = = is locally asymptotically stable ’)

end

end

end

%########################

if(p+l)<(q+d)

if p>q

if d > l

disp(’3- Since (p+l)<(q+d), p >q & d >l’)

disp(’Then The Following are True:’)

fprintf(’\n (b) = = = is globally asymptotically stable \n’)

fprintf(’\n (b) = = = is locally asymptotically stable \n’)

end

end

end

disp(’ ------- ’)

disp(’ The End ’)

% ####################
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function ans=pqdlk(p,q,d,l,k); for i=1:k+1;

y(i)=input (’Enter the value of y \n y=’);

end

for n=k+1:100;

y(n+1)=(p+y(n)+l*y(n-k))/(y(n)+q*y(n-k));

y(n+1);

end t=1:101;

ans=[t;y]’;

plot(t,y,’b.-’) xlabel(’N-iteration’); ylabel(’Y(N)’);

title(’plot of y(n+1)=(p+y(n)+l*y(n-k))/(y(n)+q*y(n-k)) ’)

hold on

grid on

p1=strcat(’k=’,num2str(k));

legend(p1)
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