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Abstract

In this thesis we will investigate the dynamical behavior of the
following rational difference equation

_ + Brp + VTn—k
A+ Bz, + Cxpy,

Tn41 n=0,1,.. (1)
where the parameters «, 3, v and A, B, C and the initial conditions
T_k,...,T_1,T0 are non-negative real numbers, and the denominator
is nonzero.

Our concentration here, is on the global stability, the periodic char-
acter, the analysis of semi-cycles and the invariant intervals of the
positive solution of the above equation.

It is worth to mention that our difference equation is the general case
of the rational equation which is studied by Kulenovic and Ladas
in their monograph ( Dynamics of Second Order Rational Difference
Equation with Open Problems and Conjectures, 2002 ).
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Introduction

The dynamical system is the study of the phenomena that evolves in space
and / or time by looking at the dynamic behavior or the geometrical and
topological properties of the solutions. Whether a particular system comes
from biology, physics, chemistry, or even the social sciences, dynamical sys-
tems is the subject that provides the mathematical tools for its analysis.

The dynamics of any situation refers to how the situation changes over the
course of time. A dynamical system is a physical setting together with rules
for how the setting changes or evolves from one moment of time to the next.

In simplest terms, a dynamical system is a system that changes over time. Thus
the solar system is a dynamical system, the united state economy is a dy-
namical system, the weather is a dynamical system, the human heart is a
dynamical system.

In mathematics, a dynamical system is a system whose behavior at a given
time depends on its behavior at one or more previous time.

There are two types of dynamical system:

1. Differential equations, time is continuous.

2. Difference equations, time is discrete.

In this thesis we will investigate one of the k' order nonlinear difference
equations.

This thesis consists of five chapters, chapter one deals with linear and non-
linear difference equations and the solution of these equations, while chapter
two deals with the behavior of solutions for difference equations. We will
focus on the equilibrium points and their stability, periodic points and the
stair step diagrams.
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Chapter three is the main one in which we discuss the dynamics of

o+ ﬁ$n + VXn—k
A+ Bx, + Cx,_;

Tp4+1 =

where the parameters «, (3, v and A, B, C and the initial conditions
T_j,...,T_1,2o arenon-negative real numbers, and the denominator is nonzero.
We will study the local stability, the analysis of semi-cycles and the global
stability.

In chapter four we will study the special cases of this equation. Finally, in
the last chapter we will present the numerical part of our work.

VIII
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1 SOLUTION OF DIFFERENCE EQUATIONS 3

1 Solution of Difference Equations

1.1 Introduction to Difference Equation

A difference equation is a sequence of numbers that is generated recursively
using a rule to relate each number in the sequence to previous numbers in
the sequence. Which means that the term x,, is related to the terms

Ty Ty 1y o v vy Ty

This relation expresses itself in the difference equation

To1 = fxn) (1.1.1)

starting from a point xo, we may generate the sequence
xo, f(xo), f(f(z0)), fF(f(f(z0))),... for more convenience, we use

the notation f2(ro) = f(f(x0)), f*(@e) = F(F(F(@0))) --.

where, f?(xy) = x5 is called the second iterate of xy under f,
more generally, f*(zo) = x, is called the n'* iterate of 2y under f.

Observe that x(0) = f%(x) = x¢

also, x(n +1) = f""(x0) = f[f"(w0)] = f(an).

Now, let us consider the following difference equation

Tpi1 = f(zn) = (z(n))? for 1 =2,n=0,1,2,...

The iterated function will produce unbounded orbit {2,4, 16, ... }.

“ The positive orbit O(zg) of a point xq is defined to be the set of points
O(x0) = {wo, f(20), f*(w0), ... } 7
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1.2 Solution of First Order Linear Difference Equa-
tions

In this section we study a special case of Eq. (1.1.1),
Tpil = ATy, aF£0 (1.2.1)
with initial value xy and we will give the details to find the solution and show

the behavior of this linear difference equation.

We can calculate the solution of x(n + 1) = ax(n) recursively.
Set z(0) = xo.

1 = x(1) = ax(0) = axy
19 = 2(2) = ax(1) = a’x
13 = 2(3) = ax(2) = a’x

This iterative procedure is an example of a discrete dynamical system.
We make the following results about the limiting behavior of the solution.

1. Ifa= 1, then lim, .. (x,) = xo.
if
2. ffa= —1, iy o () = 4 0 20 TEVR
—x9 ,if n odd
3. If|a|>1, lim,, o0 () = 0.

4. If |a|< 1, then lim, o (x,) = 0.

The previous difference equation (Eq. (1.2.1)) is called a linear homogeneous
first order difference equation.
The associated nonhomogeneous equation is given by

Tpi1 = aTy + b, a#0

where, a and b are real numbers defined for n > 0.
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We get the unique solution of the nonhomogeneous equation by forward
iteration with initial condition z.
r1 = axg+ b.
Ty = axy + b= alaxo +b) + b = a*xo + ab+ b.
T3 =axs +b=alaxr; +b)+b=a’zg+ (a* +a' + 1)b

Tp=ar, 1 +b=a(a"trg+a" 20+ - +b)+b
=a"zo+ (@t +a" 2+ +a+1)b.

But the series a" ! +a" 2+ +a+1= Y1 d

And
-, |n ifa=1
ZCL - 1—a™ f 1
=0 1—a 1L a 7&
Thus the solution of this difference equation is given by
xo + nb Jfa=1
Ty = n
a"xo+ ()b Jifa # 1

1—a

Definition 1.2.1. The order of a dynamical system of difference equation is
the difference between the largest and the smallest arguments n appearing in
it.

Example 1.2.1. x,.1 =ax, +0, has order 1.

Tpiq +az, = bx, o has order 6.

Tpa1l = 2Ty + Tpg has order k+1.
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1.3 Theory of Linear Difference Equations
The normal form of a k' order nonhomogeneous linear difference equation

is given by

Ynik + Pk—1Ynik—1+ ** + P1Yns1 + DoYn = g(n) (1.3.1)

where p;(n) and g(n) are real-valued functions defined for n > ng
and po(n) # 0.

If g(n) = 0 then Eq. (1.3.1) is said to be a homogeneous equation.
So, the general form of the £ order homogeneous difference equation is

Yntk + Pk—1Yntk—1 + - + P1Ynt1 + DoYn = 0 (1.3.2)

Eq. (1.3.1) may be written in the form

Ynik = —Pk-1Ynik-1 — "+ —D1Yns1 + —PoYn + g(n) (1.3.3)

Example 1.3.1. Consider the second order difference equation

y(n+2)+ny(n+1) —3y(n) =n (1.3.4)

where y(1) =0, y(2) = -1,
find the value of y(3), y(4) and y(5).

Solution:
First we rewrite Eq. (1.3.4) in the convenient form.

yn+2)=n+—ny(n+1)+3y(n)

forn=1 wehave y(3)=1+3y(l)—1y(2) =2
for n =2 y(4) =2+ 3y(2) —2y(3) = =5
forn =3 y(5) =3+ 3y(3) —3y(4) =24

in the same way we can find the other terms of the solutions of our difference
equation y(6), y(7), . ...



1 SOLUTION OF DIFFERENCE EQUATIONS 7

A sequence {y(n)}o> or simply y(n) is said to be a solution of Eq. (1.3.1)
if it satisfies the equation.

Definition 1.3.1. [12] The functions fi(n), fa(n), ..., fr(n) are said to
be linearly independent for n > nyg, if whenever

a1 fi(n) +azfo(n) +- - +a, fr(n) =0
for all n > ng, then we must have a1 = as = --- = a, = 0.

Example 1.3.2. Show that the functions 5", n5™ and n?5" are linearly in-
dependent for n > 1.

Solution:

Suppose that for constants ci ,co and c3 we have

15" 4 cond™ + csn?5" =0 Vn>1,

5"(cy + con + c3n?) =0

= ¢ + con + c3n? = 0 (dividing by 5™ ).

This is impossible unless c3 = 0, since a second degree equation in n posses
at most two solutions.

similarly co = 0, whence c; = 0, which establishes the linear independence of
our functions.

Definition 1.3.2. [12] A set of k linearly independent solutions of Eq. (1.3.2)
is called a fundamental set of solutions.

Theorem 1.3.1. [12] If po(n) # 0, for all n > ng, then the homoge-
3.2)

neous difference equation (Eq. (1.3.2)) has a fundamental set of solutions
forn > nyg.
Definition 1.3.3. [12] Let {z1(n), z2(n), ..., z,(n)} be a fundamental

set of solutions of Eq. (1.3.2) then the general solution of Eq. (1.3.2) is given
by
z(n) = Xi_ja;7:(n)

for arbitrary constants a;.
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1.4 Solution of Linear Homogeneous Equations

Consider the K™ order difference equation ( Eq. (1.3.2))

Yntk T Pk—1Yntk—1 T+ + D1¥Ynt1 + Poyn =0

where the p;’s are constants and py # 0. Suppose that y, = A", where \ is
either a complex or real number. Substituting this value into Eq. (1.3.2), we
obtain

% +pk,1>\k + -+ p = 0.

This equation is called the characteristic equation of Eq. (1.3.2) and its roots
{A1, A2, ..., A} are called the characteristic roots. Since py # 0, so none of
the characteristic roots are equal to zero.

There are different cases of A’s, so the general solution of Eq. (1.3.2) has
different situations depending on the cases of the characteristic roots.

Casel:
Suppose that the characteristic roots {1, A2, ... Az} are distinct,
and {7, A}, ... A7} is a fundamental set of solutions so the general

solution is z:(n) = S2F | a;A?, a; are constant numbers.
Example 1.4.1. Consider the 2" order homogeneous difference equation
z(n+2)-5x(n+1)+6x(n)=0, z(0)=0, z(1)=1

find the general solution of this difference equation.

Solution:
The characteristic equation is A2 — 5\ + 6 = 0.
Thus, the characteristic roots are Ay = 2, Ay = 3, and these roots give us the
general solution x(n) = ¢1(2)" + ¢2(3)™.
To find the constants ¢;, ¢y we use the initial values
.1'(0) =1+ Co =0
z(l) =2¢; + 3¢ =1
after solving the above system we obtain
cg = —1and ¢, = 1.
Hence the general solution of the equation is given by
z(n) = —1(2)" + 1(3)™.
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Case2:
Suppose that the characteristic roots {A1, A, ... Az} all are equal,
so the general solution is given by

x(n) = /\”(CLQ +an+---+ ak_lnk—l)

Example 1.4.2. Find the general solution of the following difference equa-
tion x(n+2)+8x(n+1)+16x(n)=0.

Solution:
The characteristic equation of this difference equation is given by
N+8A+16=0 = (A+4)?=0.
Thus the characteristic roots are A} = Ay = —4.
So, the general solution is xz(n) = (¢; + can)(—4)".

Case3: Complex characteristic roots.

Assume that the homogeneous difference equation of 2"¢ order has

the complex characteristic roots Ay = a+ 13, Ay = a — 5.

The general solution will be  y(n) = ai(a+i6)" + az(a — iB)"

In polar coordinate

a=rcosl, B=rsinf, r=+/a?+ 32, 0=tan"! g)

So, x(n) = ay(rcos +irsin @)™ + ay(r cosf — irsin 6)"

By using Moiver’s Theorem:

(rcos® + irsin@)™ = r"(cos(nf) + isin(nb))

= r"((a1 + az) cos(nh) + i(a; — as) sin(nh))

= r"(cy cos(nl) + casin(nf)) where a1 + az = ¢; and i(a; — ag) = ca.
Now let
CoOSW =

e and sinw = \/chTcZ

= 1"/ + c3(cosw cos nf + sinw sin nd)
=r"A(cos(nf —w)) where, A=/ + 3
= z(n) = r"A(cos(nf — w))

Example 1.4.3. Consider the 2" order homogeneous difference equation
z(n+2)+16x(n)=0, write the general solution.

Solution:
The characteristic equation of the homogeneous equation is A\24+16 = 0 which
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gives the characteristic roots Ay =0+ 47 and Xy = 0 — 44, thus r=4 and

0 = tan_l(g) =1I.

So, the general solution is z(n) = 4"(c; cos(nf) + casin(ny))

1.5 Solution of Nonhomogeneous Linear Equations

In this section we focus our attention on solving the k' order linear
nonhomogeneous equations.

Yntk + Ph—1Yn+k—1 + - + P1Ynt+1 + Poyn = g(n). (1.5.1)

Where py # 0, for all n > ng, the sequence g(n) is called the external force,
or input of the system.

Example 1.5.1. Consider the nonhomogeneous difference equation

y(n+2) —y(n+1) —6y(n) =5(3)" (1.5.2)

(a) Show that y;(n) = n(3)"! and yz(n) = (n+ 1)(3)""! are solutions of
the equation.

(b) Show that y(n) = cn(3)""1 is not a solution of the equation, where c is
constant.

(¢) Show that y(n) = ya(n) — y1(n) is not a solution of the equation.
Solution:

(a) To show that n(3"71) is a solution, we substitute y(n) = n(3""!) in the
equation (n + 2)3"* — (n + 1)3" — 6n3"~1 = 53"
3"Bn+6—n—1—2n|=53"
=[Bn+6—-—n—1-2n]=5.

So y1(n) = n(3)""! is a solution of the equation.
In the same way, we see that ys(n) = (n + 1)(3)" ! is a solution
of the equation.
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(b) To see if y(n) = cn(3)"~! is not a solution of the equation, we substitute
y(n) = en(3)"! in the equation.
c(n+2)(3)"™ —c(n +1)3" — 6cn3 !
= 3"[3cn + 6¢ — cn — ¢ — 2¢en] = ¢53™.
So, y(n) = en(3"!) is not a solution.

(c) y(n) =ya(n) —yi(n) = (1 + n)3"t —n3*~! =31
Substituting this into the equation yields, so that y(n) = (3)"~! is not a
solution.

From the above example we conclude that neither the sum (difference) of two
solutions nor a multiple of a solution is a solution. The sum and the difference
of two solutions of the nonhomogeneous equation is actually a solution of the
associated homogeneous equation.

Theorem 1.5.1. [12] If y1(n) and ya(n) are solutions of Eq. (1.5.1) then
y(n) = y1(n) —y2(n) is a solution of the corresponding homogeneous equation
Yntk + Ph—1Yntk—1 + -+ D1¥Yny1 + PoYn = 0.

Theorem 1.5.2. [12] Any solution y(n)of Eq. (1.5.1) may be written as

k

y(n) = yp(n) + ) aiwi(n) .

=1

Where Zle a;x;(n) is the general solution of the homogeneous equation,
it 1s denoted by y.(n) the complementary solution of the non homogeneous
equations, and y,(n) (the particular solution) is a solution of the
nonhomogeneous equations.

The main idea of solving this nonhomogeneous equation (Eq. (1.5.1)) is
to find the particular solution y,(n), in addition to find y.(n).
There are some techniques to solve the nonhomogeneous equations, and the
following example show one of these techniques.

Example 1.5.2. Solve the difference equation

y(n+2)+8y(n+1)+ Ty(n) = n3" (1.5.3)
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Solution:
The characteristic roots of the homogeneous equation are \y = —1, Ay = —7.
S50, ye(n) =ci(=1)" + co(=T7)".
To find the particular solution, let y,(n) = 3"(ap + ain), substituting this
relation into Eq. (1.5.3)
We get,
n3" = 3" (ag + ar(n + 2)) + 83" (ag + ay(n + 1)) + 73" (ag + a1(n))
n3" = 3"[9ap + 9a1n + 18a; + 24ag + 24ay + 24a1n + Tag + Tain]
hence,
40ag + 42a; =0 and 40a; =1
= a)] = %, ag = gTQ(}
The particular solution is y,(n) = 3"[g& + (
is y(n) = ye(n) +yp(n)

1

15)n), and the general solution

So, y(n) = c1(—1)" + co(—=7)" + 3”[% + (%)n]

1.6 Solution of Nonlinear Difference Equations

In general, most nonlinear difference equations cannot be solved explicitly,
however some types of them can be solved by transforming nonlinear into
linear equations. In this section we study and solve a few types of nonlinear
difference equations.

Type I
Equations of Riccati type:

z(n+ 1)z(n) + p(n)z(n + 1) + g(n)z(n) =0 (1.6.1)

1

to solve this equation, let z(n) = o)

we divide Eq. (1.6.1) by x(n + 1)z(n), then substituting 2(n) = -+
to give us
14+ p(n)z(n) +q(n)z(n+1) =0 (1.6.2)

Example 1.6.1. Solve the difference equation

y(n+Dy(n) —y(n+1)+y(n) =0
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_ _yn+l) y(n)
y(1n+1)y(n) 1+ y(n+1)y(n) 0
L= 3 T omm =0
1—2(n)+z2(n+1)=0, (asz(n)= ﬁ )

z(n+1)=2z2(n)—1

and this is first order difference equation.

Type 11
Equations of general Riccati Type:

z(n+1)= (1.6.3)

where ¢(n) # 0,
“if ¢(n) = 0, then Eq. (1.6.3) will be linear difference equation ”
also, a(n)d(n) — b(n)c(n) # 0, ¥ n > 0.

Let c(n)xz(n) +d(n) = % = 2(n) = y(n+1)  d(n)

substitute z(n) in Eq. (1.6.3) to give us

n+1 d(n
Ykl dnrl) _ SIS — G )

c(n+1)y(n+1) c(n+l) y(nt1)

This equation simplifies to

y(n+2) + pi(n)y(n + 1) + pa(n)y(n) = 0 (1.6.4)

7c(n)d(n+1()+)a(n)c(n+1)

where py(n) =

and pa(n) = (aw)d(n) ~ b(n)c(n) L.

Example 1.6.2. Solve the difference equation

2z(n) +4

rn+1) = xz(n) —1

Solution:
From the above equation we obtain, a= 2, b= 4, c= 1 and d= -1
as ad —bc=—6#0and ¢ #0 we will use the transformation
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x(n)—1= y(y’z:)l).

This transformation gives us the following linear difference equation
yn+2)—1ly(n+1) —6y(n) =0

the characteristic roots of this equation are A\; = 3, \y = —2

hence, y(n) = c1(3)" + c2(—2)",

but, z(n) = y(y”(—:)l) +1 by substituting y(n) = ¢1(3)" 4 c2(—2)"

in the previous equation we get,

¢ (3)n+1 + 62(_2)n+1

r(n) = + 1.
( ) 01(3)” + CQ(—Q)n
Type 111
Homogeneous difference equations of the type:
z(n+1)
s =0. 1.6.5
() (1:6:2)
Use the transformation z(n) = % to transform Eq. (1.6.5) to a linear
equation, then we can solve it easily.
Example 1.6.3. Solve the difference equation
y?*(n+1) = 2y(n+ y(n) — 3y*(n) =0 (1.6.6)
Solution:
Divide Eq. (1.6.6) by y*(n)
we get,
1))\ 1
(M) _9 (M) 3.0 (1.6.7)
y(n) y(n)
but % = z(n), by substituting it in Eq. (1.6.7) we get the following
equation

2*(n) —2z(n) =3 =0
= (z(n) =3)(z(n)+1)=0
Thus either, z(n)=0 or z(n)=-1

but y(n+1)=z(n)y(n)
So, y(n+1)=3 y(n) or y(n+1)=-y(n)
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Type IV
Consider the difference equation of the form

(y(n+ k)" (y(n+k=1)" ... (y(n)"™*" = g(n). (1.6.8)
Use the transformation z(n) = In(y(n)) to convert Eq. (1.6.8) to

rizin+k)+rezin+k—1)+- +rp2(n) =In(g(n))
Example 1.6.4. Solve the difference equation

y*(n+1)

00 (1.6.9)

y(n+2) =

Solution:
By taking (In) for both sides, Eq. (1.6.9) becomes
Iny(n+2) =3lny(n+1) —2lny(n) let Ilny(n)=z(n).
we obtain,
z(n+2)—3z(n+1)+22(n) =0
the characteristic roots of this second order difference equation are A\; = 2,
Ao = 1 and the general solution is, z(n) = ¢1(2)" + co(1)"
therefore,
y(n) = exp(z(n)) = exp(c1(2)" + c2).
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2 Behavior of Solutions for Difference Equa-
tions

2.1 The Equilibrium Points

Let us consider the difference equation
x(n+1) = f(z,) (2.1.1)

Definition 2.1.1. [11] A point T is said to be an equilibrium point of
x(n+1) = f(x,) ifitis a fivxed point of f that is f(x) = T.

Example 2.1.1. Find the equilibrium points of the following
difference equation
z(n+1)=az(n)?—Tz(n) +7

Solution:

To find the equilibrium points let f(Z) = T.
=>T=2-Tt+7 =7"-8+7=0

hence there are two equilibrium points * =7 and = =1

Example 2.1.2. Determine the fized points for the equation

fa)=5-"2

x
Solution:

We can find the fixed points by letting f(z) == =T =5 —

multiplying by T, we get T2 — 5 +6 = 0.

Then we conclude that T =3 and T = 2 are the two fized points.

ISl =)

Definition 2.1.2. [12] Let u > 0, then the difference equation
z(n+1) = pz(n)[l —z(n)] (2.1.2)
1s called the logistic difference equation and the function
Fu(x) = pa(1 — )

1s called logistic map.
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Example 2.1.3. Find the equilibrium points of Eq. (2.1.2).

Solution:
To find the equilibrium points of the logistic difference equation, we solve
the equation F,(z) =T = & = pz[l — I

hence the two fized points are 0 and “T_l

Graphically
An equilibrium points is the z-coordinate of the point where the graph of f
intersects the diagonal line y = x.
The two following figures show the equilibrium points of the
previous functions.

plot xn+1=utn). 27w (n)+7
15 . ! : ! ;

[ S odRae ........... .......... .......... iR ..........

x(n+1)

10 i ; ; ; ; ; i

Figure 2.1.0: The equilibrium points of x(n + 1) = z(n)? — Tz(n) + 7
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plot y=5-6./x)
3B ! T ! ! !

Figure 2.1.1: The fixed points of f(x) =5 — g

2.2 Stability Theory

The main objective in the study of dynamical system is to analyze the be-
havior of its solutions near an equilibrium point, this study constitutes the
Stability Theory.

Definition 2.2.1. [11] Let T be an equilibrium point of Fq. (2.1.1) and as-
sume that I is some interval of real numbers, where * € I The equilibrium
point T is called:

(1) Locally stable “ or stable 7 if for every € > 0, there exists 6 > 0 such
that for xo € I with | xg — Z |< 0 we have | z,, — % |<€, for alln > 0.

”

(11) Locally asymptotically stable “ or asymptotically stable 7 if it is locally
stable, and if there exists v > 0 such that for xq € I with | zo — Z |< 7y
we have

lim x, ==
n—oo
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(11i) A global attractor if for xy € I, we have

lim z(n) =2

n—oo

»

(iv) A global asymptotically stable “ or globally stable
and 1t 1s a global attractor.

if it is locally stable

(v) unstable if it is not stable.

(vi) A repeller “or a source ” if there exists r > 0 such that for xq € I with
| zg — Z |< r, there exists N > 1 such that | xx — T |> 7.
Clearly a source is an unstable equilibrium point.

2.3 Criterion For The Asymptotic Stability

In this section, we will state some useful criteria for the asymptotic stability
of the equilibrium point.

Theorem 2.3.1. [12] Let T be an equilibrium point of the difference equation
z(n+1) = f(z,) (2.3.1)

where fis continuously differentiable at x. Then the following statements are
true:

(1) If | f'(Z) |< 1, then T is asymptotically stable.
(2) If | f'(z) |> 1, then T is unstable.

Example 2.3.1. Consider the difference equation
x(n+1)=2n)* —Tz(n) + 7

as we have seen in section (2.1 ) this equation has two equilibrium points
=17 and T =1. The equilibrium point T = 7 is unstable since
f(N)y=2(7)—7=7>1 so, =7 is unstable as | f'(z) |> 1,

also, the equilibrium point T = 1 is unstable, since

| f() =] 201) =T |=[ -5 ]=5>1.
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Example 2.3.2. Consider the first order difference equation
r(n+1) =z(n)? —z(n)+ 1.

We can easily show that, the only equilibrium point of this equation is * =1,
but, when T =1 then | f'(1) |=| 2(1) — 1 |= 1, and this case will discuss in
the following theorem.

Theorem 2.3.2. [12] Suppose that for an equilibrium point T of Eq. (2.3.1),
f'(z) =1 then the following statements are true:

(1) If f"(z) # 0, then T is unstable.
(it) If f"(z) =0, and f"(z) >0 then T is unstable.
(1i1) If f"(z) =0, and f"(Z) <0 then T is asymptotically stable.

Hence, the equilibrium point & = 1 from the previous example is unstable

as f'(1) =2 #0.

The preceding Theorem 2.3.2 applied when f/(z) = 1, and we will use
the following theorem in case f'(z) = —1.
But before stating the theorem, we need to introduce the notation of Schwarzian
derivative of a function f, let f be a derivative function then the Schwarzian

Sf is given by: ,
@3 [f”(f)]
[z 2@

Sf(z)

and when f'(z) = —1

then
3

SF(@) = —1"(@) — S (@)

Theorem 2.3.3. [12] Suppose that for the equilibrium point T of Fq. (2.3.1)
f'(z) = =1, then the following statements hold:

(1) If Sf(z) > 0, then T is unstable.

(i) If Sf(x) <0, then T is asymptotically stable.
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Example 2.3.3. Consider the difference equation
z(n+1) = z(n)? + 3z(n)

determine the stability of the equilibrium points.

Solution:

This equation has two equilibrium points 0 and -2.

By applying Theorem (2.3.1), we conclude that 0 is unstable as
f(0)=2(0)+3=3>1.

But at T = =2, = f'(—2) = —1, so we use Theorem (2.3.3) and we obtain
SF(=2) = —f"(=2) = 5 [f"(-2)]" =0 - 3(4) = 6 < 0.

Thus the equilibrium point (-2) is asymptotically stable as Sf(—2) < 0.

Remark:
<& Theorem (2.3.2) fails if for a fixed point z, f'(z) =1 and
f'(x) = f"(z) = 0.
<& Theorem (2.3.3) fails if f/(z) = —1 and Sf(z) = 0.

Example 2.3.4. f(z) = —x + 22* — 42® for fized point T = 0,
f(z)=—1 and Sf(z)=0, so we cannot use Theorem (2.3.3).
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2.4 Periodic Points and Cycles

One of the most important notation in the study of dynamical systems is to
study its periodicity .

Definition 2.4.1. [12] Let b be in the domain of f, then

1. b is called a periodic point of f if for some positive integer k, f*(b) = b.
A point is k-periodic if it is a fived point of f*, that is b is an equilibrium
point of the difference equation x(n + 1) = f*(z(n)).

The periodic orbit of b,0(b)={b, f(b), f2(b),..., fF1(b)} is called a k-

cycle.

2. b 1s called eventually k-periodic if for some positive integer m,

frE(D) = (D).

Graphically:
We can find the k-periodic point of a difference equation, by finding the
2- coordinate of the point where the graph of f*¥ meets the diagonal line
= .

Example 2.4.1. Consider the first order difference equation

z(n+ 1) = 222(n), find 2-periodic points.

Solution:

Let, f(z(n)) =xz(n+1), so f(z) = 227,

and as f*(z) = f(f(z)), then f(2z%) = 2(22?)% = 8x*.

By letting f?(x) = x we see that the 2-periodic points of our equation

are 0 and %

We can also plot f*(z) to see from the figure the 2-periodic points, by plotting
the graph f?*(x) and see where it meets the diagonal line y = .
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plot y:2}{2

1 ! ! ! T

Figure 2.4.1: The 2-periodic points of z(n + 1) = 2z%(n)

Definition 2.4.2. [12] Let b be a k-periodic point of f, then b is

(1) stable if it is a stable fized point of f*.

(2) asymptotically stable if it is an asymptotically stable fized point of f*.

(3) unstable if it is an unstable fived point of f*.

Theorem 2.4.1. [12] Let O(b)={b = x(0),z(1),...,a2(k—1)}

23

be a k-cycle of a continuously differentiable function f. Then the following

statements hold:

(1) The k-cycle O(b)is asymptotically stable if
| ['(@(0))f"(z(1)) ... f(x(k = 1)) |< 1.

(i) The k-cycle O(b) is unstable if | f'(x(0))f (x(1))... f'(x(k —1)) |> 1.
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2.5 The Stair Step Diagrams

The stair step diagrams or (cobweb diagram) is a graphical method, for ana-
lyzing the stability of equilibrium points for the equation f(z(n)) = z(n+1).
We draw a graph of f in the (z(n),x(n + 1)) plane, and the y = = on the
same plane.

We start at an initial point xg, then we draw a vertical line through zy until
we intersect the graph of f at (z¢,x;). Next we draw a horizontal line from
(20, 2(1)) to meet the diagonal line y = = at the point (z(1), (1)), then we
draw a vertical line from the point (x(1),z(1)) to intersect the graph of f at
the point (z(1),x(2)), and by continuing this process we may find z(n),

for all n > 0.

Now, we will draw the cobweb diagram around the equilibrium point £ = 0
by taking two initial points xqg = .6 and x¢( = —.6, for the function
z(n+1) = 223(n).
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plot y=2x3

Figure 2.5.1: Stability of Z = 0 of z(n + 1) = 223(n)

As we can see from this figure, the equilibrium point z = 0 is asymptoti-
cally stable.

2.6 The Limiting Behavior Of The Solutions

To simplify our exposition let us take the second order difference equation
y(n+2) +piy(n+1) + pay(n) =0 (2.6.1)

and we study the behavior of its solutions.
Assume that A\; and A, are the characteristic roots of the equation. Then
we have the following cases.

(a) Case one: Repeated Roots A\ = Ay = A
The general solution of Eq. (2.6.1) is given by (a; + asn)A™.
If | A |< 1 then the solution y(n) converges to zero.
If | A |> 1, then the solution y(n) diverges either monotonically if
A > 1or by oscillating if A < —1.
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(b) Case two: Distinct Roots
Suppose that \; and Ay are two real distinct roots, then the general
solution of Eq. (2.6.1), as we have seen is given by
y(n) = a1 A} + ag\y.

If | A1 [>] A2 |, we can write y(n) = A} [al + ag(&)”}

1

n
since as | :\\—f |< 1 then lim,, (i—?) =0,

lim,, .o y(n) = lim,,_,o a1 A}, there are six different situations
depending on the value of A;.

4

A1 > 1, The sequence {a; A7} diverges to oo “ unstable system ”.

A1 = 1, The sequence {a;\]} is a constant sequence.

«

0 < A; < 1, The sequence {a;A]} converge to zero “ stable system ”.

-~ L=

—1 < A1 < 0 The sequence {a;A}} is oscillating around zero, and
converging to zero “ stable system ”.

ot

A1 = —1 The sequence is oscillating between two values a; and —ay.

6. A\ < —1, The sequence {a; A7} is oscillating but increasing in magni-
tude “ unstable system 7.

(c) Case three: Two Complex Roots
The last case that we will study here, is when the two roots are complex
numbers.
A = a+1if and Ay = a — i the general solution of this case as
we have seen is y(n) = Ar"cos(nf —w) where, r = \/a?+ 2 and
0 = tan~!(2).
The solution y(n) oscillates since the cosine function oscillates, and this
oscillation has three different cases depending on the location of the con-
jugate characteristic roots:

1. r=1,here \; and Xy = A lie on the unit circle in this case y(n)
is oscillating but constant in magnitude.

2. 7 > 1,then \;, A\ = \; are outside the unit circle, hence y(n) is
oscillating but increasing in magnitude “ unstable system ”.
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3. r <1 then \;and )y = A lie inside the unit disk, the solution y(n)
oscillates but converges to zero as n — oo “ stable system .

We summarize the previous three cases in the following theorem:
Theorem 2.6.1. [12] The following statements hold.

(1) All solutions of Eq. (2.6.1) oscillate about zero if and only if
the characteristic equation has no positive real roots.

(11) All solutions of Eq. (2.6.1) converge to zero if and only if
maz{| A\ || A2 |} < 1.

Before we state the next theorem, let us consider the second order
nonhomogeneous difference equation

yn+2)+pyn+ 1)+ py(n) =u (2.6.2)

where p is nonzero constant.

The equilibrium point of this equation is § = —%

1+p1+po”

So the general solution of Eq. (2.6.2) when y,(n) =y is given by
y(n) =4+ y.(n).

Now, we can conclude the following theorem.
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Theorem 2.6.2. [12] The following statements hold:

(1) All solutions of the nonhomogeneous equation (Eq. (2.6.2)) oscillate
about the equilibrium solution y if and only if none of the characteristic
roots of the homogeneous equation (Eq. (2.6.1)) is a positive real num-
ber.

(11) All solutions of Eq. (2.6.2) converge to y as n — oo if and only if
maz {| A1 |,| A2 |} <1 where Ay and Xy are the characteristic roots
of the homogeneous equation (Eq. (2.6.1)).

The previous two theorems give necessary and sufficient conditions under
which a second order equation is locally asymptotically stable.
But, the following results provide us with explicit criteria for stability based
on the values of the coefficients p; and p, of Eq. (2.6.1) and Eq. (2.6.2).

Theorem 2.6.3. [12] The conditions

1+p14+p2>0, 1—=p+p2>0, 1—py>0

are necessary and sufficient for the equilibrium point of Eq. (2.6.1) and
Eq. (2.6.2) to be asymptotically stable “ all solutions converge to y .

Theorem 2.6.4. ' The condition

| pr|<14p2 <2

15 necessary and sufficient for the asymptotically stability of the zero solution
of the equation

y(n+2) +pry(n+1) + py(n) =0
Theorem 2.6.5. [12] Consider the second order difference equation
y(n+2) = pry(n +1) = pay(n) = 0.

Then all solutions of the equation converge to zero if | p1 | + | p2 |< 1.

1See Question 12 in [12], P.97
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a+Brn+yT, i
A+Bxn+Cxy

3 Dynamics of z,,1 =

3.1 Introduction and Preliminaries

Our goal in this chapter is to study the dynamics of the higher order nonlinear
difference equation

o+ BT, + YT g
" A+ Bz, +Cxpy’

Tni1 n=0,1,2,... (3.1.1)
where the initial conditions z_g,...,x_1, g are non-negative real numbers,
ke {1,2,...}, and all the parameters «, 3, 7,A, B and C are non-negative
real numbers, and the denominator is nonzero.

In 2002, Ladas and Kulenovic in [16] studied the special case of our dif-
ference equation, when k =1

_ o+ ﬁxn =+ VLn—1
A+ Bz, +Cxpy’

Tpal n=20,1,2,...

where the parameters «, 3, 7, A, B and C are non-negative real numbers,
and the initial conditions x_q, x¢ are non-negative real numbers, and the de-
nominator is nonzero.

They investigated the local stability, semi-cycles, periodicity, and the in-
variant intervals.

Li and Sun in [24] studied the dynamical characteristics, such as the global
asymptotic stability, the invariant interval, the periodic and oscillatory char-
acters of all positive solutions of the equation

bTy + Tn—k
Tppl = ———, n=0,1,2,...
q + Tp_k
where the initial conditions z_g,...,x_1, g are non-negative real numbers,

k € {1,2,...}, and the parameters p and q are non-negative real num-
bers, and the denominator is nonzero.
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Devault et al. in [8] investigated the periodic character and the global
stability of the solutions of the difference equation

p + Tpk
Tppl = ————, n=20,1,2,...
qTy + Tpi
where the initial conditions x_g,...,x_1, o are non-negative real numbers,

k€ {1,2,...}, and all the parameters p and ¢ are non-negative real num-
bers, and the denominator is nonzero.

Dehghan and Sebdani in [7] investigated the global stability, the bound-
edness of positive solutions and the character of semi-cycles of the difference
equation

D+ qTn
Tpy1 = — n:O,1,27...
1+ 2,k
where the initial conditions x_g,...,x_1,xy are non-negative real numbers,

k € {1,2,...}, and all the parameters p and ¢ are non-negative real num-
bers, and the denominator is nonzero.

Also, Dehghan and Douraki in [5] investigated the global stability, invariant
intervals and the boundedness of positive solutions of the difference equation

P+ Ty
Tppl = ————, n=20,1,2,...
Tp + qTn—k
where the initial conditions z_g, ..., x_1, xg are non-negative real numbers, k €

{1,2,...}, and all the parameters p and q are non-negative real numbers, and
the denominator is nonzero.

S.Abu Baha in [1] studied the local and global stability, invariant intervals,
analysis of semi-cycles and the periodic character of solution of the difference
equation

Bn + Yoy
Tyl = ————, n=20,1,2,...
Bx, + Cx,_
where the initial conditions x_g,...,x_1,xo are non-negative real numbers,

k€ {1,2,...}, and all the parameters 3, v, B and C are non-negative real
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numbers, and the denominator is nonzero.

Farhat and Alaweneh studied independently in [13] and [3] the difference

equation
a+ B, + yTn_g

Bz, + Cxp_y,
where the initial conditions x_g,...,x_1, o are non-negative real numbers,
k€ {1,2,...}, and all the parameters «, 3, 7, B and C are non-negative
real numbers, and the denominator is nonzero.
They studied the periodic character of the positive solution, the invariant
intervals, the oscillation and the global stability of all solutions of the above
difference equation.

Tptl = ) n=20,1,2,...

Here, we present the basic definitions and theorems, and some results which
will be useful in our investigation of the behavior of solution of Eq. (3.1.1),
in this chapter.

Definition 3.1.1. [19] The equilibrium point y of the equation

Ynt1 = fUns YUn—1, -+ > Yn—k), n=0,1,... (3.1.2)
is the point that satisfies the condition y = f(y,y,...,Y).

Definition 3.1.2. [7] Let y be an equilibrium point of equation Eq. (3.1.2),
then the equilibrium point y is called:

1- Locally stable “ or stable ” if for every e > 0 there exist § > 0 such that
forally_p,....,y—1,yo €l with) ,_ , |yi—y|<d we have |y, —7y|<e
for alln > —k.

2- Locally asymptotically stable “ asymptotically stable 7 if it is locally stable
and if there exist v > 0 such that for all y_g, ..., y—1,Yy0 € 1 with > ,_ , |
yi — § |< 7y, we have

lim vy, =y.
3- Global attractor if for every y_g,...,y_1,Y0 € I we have

lim y, =79.

n—-—uoo
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4- Globally asymptotically stable if it is locally stable and global attractor.
5- Unstable if it is not stable.

6- A source or a repeller, if there exists v > 0 such that for all
Yky - Y—1,Y0 € L with > . | yi — 7y |< 7y there exists N > 1 such that

lyn — g 1>

The linearized equation associated with Eq. (3.1.2) about the equilibrium
point ¥ is
of _ _
Ynil = Z Gy s U)Yn—i n=0,1,... (3.1.3)

; ou,;
i=—k

and its characteristic equation

>\k+1 o Z

i=—k

gINT (3.1.4)

8ul
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3.2 Local Stability

In this section we investigate the locally asymptotic stability of the unique
positive equilibrium point of Eq. (3.1.1).

But before investigating the local stability of the positive equilibrium point
we utilize the change of variables, let x,, = %yn then

B a+t B+ VY
EynJrl — 8 8
—> )
gy, = B+ BYn + 1 BYn—k
A+ By + Ly
then .
% + ﬁyn + YYn—k
Yn+1 =
A+ Byn + Ly
hence,
. Oé_g + Yn + %yn—kz
Yn+1 =

% + Yn + %yn—k .

Setp:%—g, qz%, L:%andd:%.

So we get,
P+ Yn+ Lyn i
il = . 3.2.1
Iyt dyn s (32.1)
et +x+ L
pTx Yy
r,y)=—"—"-=
f(@.y) q+x+dy
assume that
of of
= 2 (q.7 d b= —-""(y,7y
a=5 (7,9) an 9 (4, 7)

Of (q+xz+dy)—(p+tz+Ly) (¢—p)+yld—1L)
Oz (q+ =+ dy)? (q+2+dy)?
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So,
_of,_ . (q—p)+yld-1L)
=Y = Ty app
and
of _Llg+xz+dy) —dlp+x+Ly) (Lg—dp)+a(L—d
oy (g + x + dy)? N (g + x + dy)?
So,
_of (Lq —dp) +§(L —d)

b=—(y,y) =

or Y (q+ 7+ dy)?
We notice that the partial derivatives of f(x,y) are evaluated at the equi-
librium point g, so we will find the equilibrium points of Eq. (3.2.1).

Let f(y,9) =y we get,

_ p+y+Ly _ I

=—— = p+y+Ly=qy+y +d

] (Tt p+y+Ly=qy+y Y
(1+d)y*=p—(¢g—L—1)y (3.2.2)

we solve Eq. (3.2.2) and find y

(L+1—q)F/(g—L—1)2+4p(1+d)
2(d +1)

g:

The only positive equilibrium point is

(L+1—q)++/(¢g—L—1)2+4p(1 +d)
2(d + 1)

g:

For investigation of locally asymptotic stability of the unique positive equi-
librium point of Eq. (3.2.1) we need the following theorems:

Theorem 3.2.1. [17] “ Linearized stability ”

1. If all the roots of Eq. (3.1.4) lie in the open unite disk | X\ |< 1, then the
equilibrium point § of Eq. (3.1.2) is locally stable.
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2. If at least one roots of Eq. (3.1.4) has absolute value greater than one,
then the equilibrium point y of Eq. (3.1.2) is unstable.

An equilibrium point g of Eq. (3.1.2) is a saddle point if there exists a
root of Eq. (3.1.4) with absolute value less than one and another root of
Eq. (3.1.4)with absolute value greater than one.

An equilibrium point g of Eq. (3.1.2) is called a repeller if all roots of
Eq. (3.1.4) have absolute value greater than one.

Theorem 3.2.2. [2/] Assume that a,b € R and K € {1,2,...} then
la|+]0]<1 (3.2.3)
15 a sufficient condition for the asymptotic stability of the difference equation
Yni1l = QYn + OYpn_k, n=0,1,... (3.2.4)
Suppose in addition that one of the following two cases hold.
(a) K odd and b < 0.

(b) K even and ab < 0.

Then Eq. (3.2.3) is also a necessary condition for the asymptotically stable
of Eq. (3.2.4).

Theorem 3.2.3. [17] Assume that a,b € R. Then | a |[< b+ 1 < 2 is
a necessary and sufficient condition for the asymptotically stability of the
difference equation

yn+1+ayn+bynszoa n:()?lv"'
Theorem 3.2.4. [20] The difference equation
Ynt1 — bYn + by =0, n=01,...

is asymptotically stable if f 0 <|b|< %cos(kk—@).
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Note that the linearized equation associated with Eq. (3.2.1) about the
equilibrium point 7 is
Zna1 — aZp — bzp_ g = 0.

Substitute the values of a and b last in the equation to get,

_lg-ptyd-L) (Lg—dp)+(L—-d)y  _
T g g dp? " Grgrdge =0 (329)

And its characteristic equation is

AR+ (q—p)"‘@(d_L))\k_ (Lq—dp)—i—(L—d)y:O
(¢ + 7+ dy)? (q+ 7+ dy)? '

The results presented here and Theorem (3.2.2) give the following theorem

Theorem 3.2.5. The unique equilibrium point y of Eq. (3.2.1)is locally
asymptotically stable in the following cases:

1. d > L, there are two cases:

(a) (d— L)y < (p—q)
(b) (d—L)y>(p—aq)

2. d< L, then we have two cases:

(a) (d— L)y

(r—2q)
(b) (d— L)y -

<
> (p—q)
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Proof. We use Theorem (3.2.2),
from the linearized equation we have
_ YL —d)+(Lg —dp)

y(d— L)+ (q—p)
= and b=
(q+y+dy)? (q+9y+dy)?

1. when d > L, there are two cases:

(a) (d— L)y < (p — q) such that p > ¢
so we have,

—y(d—L)+(p—q)
(¢ + 7+ dy)?

~yld—1L)+ (dp— Lq)

al= , |bl= - -
lal M (¢ + 7+ dy)?

we will prove that, | a | + | b |< 1.

Substituting the value of a and b,
—y(d—L)+(p—q) +y(d— L)+ (dp — Lq)
(¢ +y+dy)
By multiplying both side with (¢ + ¥ + dy)? we get,

< 1.

~g(d—L)+p—q+y(d—L)+ (dp— Lq) < (¢+ 7§+ dy)°
= p—q+dp—Lqg < (qg+7y+dy)*
But

(q+7+dy)° = (g+ (d+1)7)* = ¢+ (d+ 1)*7* + 2qy(1 + d)

and from Eq. (3.2.2) we get,

5, p—(@g—L-1y
v= (1+d)

So,

2P —(q—L—1)y
(1+4d)

(q+7+dy)’=¢"+(d+1)

= P+ qy+qdy+p+§+ Lij+ dp + dij + dLy.

+2qy(1 +d)

37

(3.2.6)
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Now,
p—q+dp—Lg<(qg+y+dy)>’

—p—q+dp—Lg< @ +qy+qdj+p+7y+Ly+dp+dy+dLy

then,
0<q+qj+qdj+p+7+ Lij+dp+ dy + dLy.

So, the right hand side is strictly greater than zero.

(b) (d— L)y > (p— q) and we have two cases:

i) p>gq
_yd-=L)—=(p—q) ~y(d=L)+ (dp — Lq)
o 1= (q+y+dy)? - 1b1= (q+ 7+ dy)? (3:27)
?J(d—L)—(p—Q)+ﬂ(d—L)+(dp—LQ)<1
(¢ +7+ dy)? '
So,

q—p+2yd—2yL+dp—Lq < ¢*+qy+qdy+p+75+ Ly+dp+dy+dLy

cancelling dy, dp from both sides,
we obtain,

gd+q< ¢ +qy+qdy+2p+ 7+ 3Ly +dLy
then,
0<(¢®>—q)+qy+qdy+2p+7y+3Ly+dy(L—1).

This is true only if ¢ > 1 and L > 1.

ii) p<q. Whenp < g and d > L then (dp—Lq) >0 or (dp—Lq) <
0 if (dp — Lg) > 0 then

la|= yd—-rL)—(p—q b= y(d— L)+ (dp — Lq)
’ (q+y+dy)

(¢ +7y+dy)?

and this case is the same as (3.2.7),s0 |a |+ |b|< 1.
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If (dp—Lg) <0 and |(d—L)y|<|dp— Lq|
then we have
_yd-=L)—(p—q) ~ —y(d—=L)—(dp— Lq)
’CL’_ 9 |b’_ — —\92
(¢ + 7+ dy)

(¢ + 7+ dy)?
(3.2.8)
now we prove that, |a |+ |b|< 1
S0,

~g(d—L) —p+q+y(d—L) —dp+ Lq < (¢ +§ + dy)*
hence,
—p+qg—dp+Lg<@+qi+qdj+p+G+ Ly+dp+dy+dLy

0<(¢*—q)+2p+2dp+qy+qdyj+7y+ Ly+dyj+dLy — Lq

then we have,
0<(i*—q)+2p+2dp+qy+y+Ly+dy+dLy+q(dy— L).

and this is true only if, dy > L and ¢ > 1.

2. d < L, we have two cases

(a) (d— L)y < (p—g¢q) and there are two subcases
i) p<gq

|al=

—yd-L)+ @ -9 b= —y(d— L) — (dp — Lq)
2 (a+y+dy?* -
(3.2.9)

We will prove that |a |+ |b|< 1

since,

—y(d— L)+ (p—q)+ —y(d — L) — (dp — Lq) < (¢ + 5 + dy)°
hence,

—2yd+2Ly+p—q—dp+Lq < ¢*+qy+qdy+p+y+Ly+dp+dy+dLy
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= 0<(*+q)+qy+qdy+7y— Ly +2dp+3dy+ dLy — Lq
thus
0<qlg+1+y+dy—L)+y+2dp+3dy + L(dy — 7).
So the right hand side strictly greater than zero.
ii) p>gq then (dp— Lqg) > 0or (dp— Lq) <0
if (dp— Lq) >0 and | dp— Lq |>| y(d — L) |

then

—y(d—L)+(p—q)
(¢ + 7+ dy)?

_y(d—=L)+ (dp — Lq)

9 b - — —
o] (¢ + 7+ dy)?
(3.2.10)

lal=

and this case is the same as (3.2.6) when d > L,
so we have seen that |a |+ | b|< 1

when (dp — Lq) > 0 such that | (dp — Lq) |<| g(d — L) | or
then we have

—y(d—L)+(p—q) —y(d— L) — (dp — Lq)

a|= — = , | b= — —
| PETET (q+9+dy)?
and this case is the same as (3.2.9), when d < L,
S0, la|+]b]< 1.
(b) (d— L)y > (p—q) such that p < ¢
then

|abyw—m—@—m
(¢ + 9+ dy)?

|bk:—md—L%—Mp—L®
’ (¢ + 7+ dy)?

also, this case is the same as Eq. (3.2.8), so we have seen that

la|+]b|< 1.
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The proof is complete.

]

Now we will give the following definition which will be the key concept
here.

Definition 3.2.1. [5] An Invariant Interval for the difference equation

Yni1 = f(Yns Yn—1, Yn—25 - - -, YUn—), n=0,1,... (3.2.11)

is an interval I with the property that if k consecutive terms of the solution
fall in I, then all subsequent terms of the solution also belong to I. In other
words 1 is an invariant interval for Eq. (3.2.11) if yy—k, .-, yn—1,yn € I for
some N >0 then y, € I, for everyn > N.

Theorem 3.2.6. Let {y,}°° , be a solution of Eq. (3.2.1) then the following
are true:

1. Suppose that L < d, p < q and dp > Lq and assume that for some

N>0yn_k,.- -, YN-1, YN € [’;;—5,1] then y, € [%,1}, for alln > N

2. Suppose that L > d, p > q,dp > Lq, and | Lqg —dp |>| (L — d) |

and assume that for some N > 0 yn_g,..-,Yn_1,YN € [1,%} then

Yn € [1,1;1—5}, for alln > N

Proof. Let {y,}5> _, be a solution of Eq. (3.2.1)

n=—k
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1. Assume that L < d, p < ¢ and dp > Lqg then we can easily show that
f(x,y) is increasing in = and decreasing in y, by using partial derivative

Of(x,y) _ (a+dy) — (p+ Ly)
oz (¢ + z + dy)?

when L < d and p<gq then 2 (m v 0, so f(x,y) is increasing in z.

Also,
Of(x,y) _ Llg+=)—d(p+x)
dy (q + x + dy)?

when L < d and dp > Lqg then 2 y ofy) 0, and so f(x,y) is decreasing in
Y.

Now, for some N > 0, and pid < YN—ky---,YN-1,Yynv < 1, we can say
that the following step is true as “p < q and L <d”

p+yn + Lyn—i < q+yn + Lyn—s < q+yn+dyn_g

gt yntdyn—k T atyn +dyn—k  a+yn +dyn—s
So,
Yyn+1 < L.
And to show that yy.1 > ’;;—s we will substitute yy_r = 1 and
YN = pi—g in the following function,

p+yn + Lyn—i

q+yn +dyn—

and since yy,1 is increasing in yy and decreasing in yy_x, we get the
following,

YN+1 =

p+yn + Lyn—i >p+zi§+L(1) _ (p+1L) [1+M]

= p+L -
g+yy +dynr — g+ PG +d(1) (g4 a) [1 qidg’iﬁ]

Yn+1 =

2Gee Theorem 4.2.2 in [18], P.144
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but ptL 1

q+d
So,
v+ 1) [1+ 313 _prL|ltaa| _p+l
(g+d) |1+ 25 ard 1453 atd
then )
yN+1Zm

By Mathematical Induction we can prove that vy, € [%,1},for all

n > N. We proved that yyy; € [’ﬂ—s, 1], so we just will show that if

L L
YN+m—1 € [%, 1} then yyim € [%, 1]

Y P+ YN+m—1 T LYNtm— (k1) <4 + YNtm—1 + LYNtm—(k11)
N+m — =
i q+ YN+m-1 + dYNfm—(k+1) q+ YN+m-1 + dYNfm—(k+1)

also,

q+ YN+m—1+ LYNtm—(k11) 4 + YNtm—1 + AYNfm—(k+1) _q

q+ YNtm—1 T dYNtm—(k+1) ~ G+ YNtm—1 T AYNtm—(k+1)

“asp<qand L < d”.
So,
YN+m <1

Now, we will use induction hypothesis and the monotonicity properties of

the function yn .y, to show that yyi, > Zi—s.
So we will substitute ynim—(k+1) =1 and ynim—1 = PEL i the follow-

. . q+d
ing function,

P YNtm—1 T LYNtm— (k1)
q+ YN+m-1 T AYNtm—(k+1)

YN+m =
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since Yy, is increasing in yn4m—1 and decreasing in Yy jm—(r+1), We get
the following,

1
P YNtm-1 T LYNtm— (k1) S P+ Zi—g + L(1) (p+ L) [1 + qTi}

yN-i—m - =
- p+L
T yvem—t S dynem-ery T g+ T W) (g4 a) |14 ]

but ptL 1

q+d
So,
1
(pJVL)[l*qu} >p—|—L 1+q+Ld _p+L
= =
(q+d)[1+qﬁ’;%ﬂ g+d |1+55] atd
then .
p+
m=
o T q+d
So,
p+ L
m€ |—,1
YN+ [q—l—d }
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2. Assume that L > d, p > ¢, dp > Lq and | Lq — dp |>| (L — d) | then
by using partial derivative we can show that f(z,y) is decreasing in both
arguments.

Now, for some N >0, and 1 < yn_g, ..., Yn_1,Ynv < Zi—s

we have the following result as p > ¢ and L > d

pryntLyv—k _ gt yn+ Lyn—k _ qtyn +dyn—i _
q+yn+dyn—r — q+yv+dyn—r — ¢+ yn +dyn—

YN41 =

So,
yny1 = 1.

Also,

p+yn+ Lyn—k

q+yn +dyn—y

since yy41 is decreasing in yy_j for each fixed yy, then by substituting
ynv_r = 1, in the previous function we get the following,

YN+1 =

p+yn+ Lynk _ p+yn+ L(1) (p+L) [H,%}

+ + dyn_ + +d(1 UN_
¢+yv+dyn—r — atyn+d(1) (g4 ) [1+qyfd}
1 1
but m<q+—d
So,
(p+L>[1+zf+_NL]<p+L I+ _p+L
| =
e fira] o [T 0
then
p+ L
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By Mathematical Induction we can see that vy, € [1, ’;%ﬂ , forallm > N.

We proved that yy.1 € [1 ’iL], so we just will show that if yyi,m_1 €

? g+d
L L
[1, %} then ynim € [1, %} )

P+ yntm—1+ Lynim—+1) _ ¢+ YNtm—1 + LYNtm—(11)
YN+m = >

q+YNtm-1 + dYNtm—+1) G T YUN+m—1 T AYNfm—(k+1)

also,

q+ YN+m—1+t LYNtm—(k11) S 4 YN4mo AYN (k1) _

= 1
q+ YNtm—1 T dYNtm—(k+1) G+ YNtm—1 T AYNtm—(k+1)

“since p > qand L > d”.
So,
YN+m Z 1.

Also,
we will use induction hypothesis and the monotonicity properties of the

function yn s, to show that yyi, < Zi—s.

Since yninm, is decreasing in ynim—(k+1) for each fixed yyip,—1, then by
substituting ynym—(k+1) = 1, in the previous function we get the follow-
ing,

YN+m—1
P YNtm—1 T LYNm— (k1) < PHYNimo1 L(1) (p+L) [1 L ]

yN-i—m - -~ fry
+ m—1+d m— + m—1 +d(1 YNfm—
4T YN+m-1 YN-+m—(k+1) 4+ YN+m—1 (1) (q+ d) [1+ thrd 1}
1 1
So,

o D15 ey
(q+d)[l+%] q+d

1+qu++_le _p+L

1+ quinzl—l - q+d
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then
p+ L

YN+m > CH'—d

The proof is complete.

3.3 Analysis Of Semi-Cycles

Our aim in this section is to study the semi-cycles behavior of solutions of
Eq. (3.2.1) relative to the equilibrium point ¢ and relative to the end points
of the invariant interval of Eq. (3.2.1).

Now we give the definitions for the positive and negative semi-cycle of the
solution of Eq. (3.2.1), relative to an equilibrium point .

Definition 3.3.1. [19] A positive semi-cycle of the solution {y,} of Fq. (3.2.1)
consists of a“ string ” of terms {yi, Yi+1,- - -, Ym}, all greater than or equal to
the equilibrium point iy, with | > —k and m < oo and such that,

either | = —k or Il > —k and y_1 <7y

and
either m =00 or m < oo and Ymi1 < Y.

Definition 3.3.2. [19] A negative semi-cycle of the solution {y,} of Eq. (3.2.1)
consists of a“ string 7 of terms {yi, Yiy1, - .-, Ym} all less than or equal to the
equilibrium point , with | > —k and m < oo and such that

either | = —k or Il > —k and y,_1 >y
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and
either m =00 or m < oo and Ymi1 > Y.

The first semi-cycle of a solution starts with the term y_j it is positive if
Y_r >y and negative if y_p <Y

Definition 3.3.3. [20] A solution {y,} of Eq. (3.2.1) is called non-oscillatory
if there exists N > —k such that y, > y for alln > N or vy, < gy for all
n<N.

and a solution {y,} is called oscillatory if it is not non-oscillatory.

Definition 3.3.4. [9]
1. A solution {y,}° _, of a difference equation is said to be periodic with

period p if Tpyp = T, for alln > —k.

2. A solution {y,}>2_, of a difference equation is said to be periodic with
prime period p or a p-cycle if it is periodic with period p and p is the least
positive integer for which T,y = ).
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Definition 3.3.5. Let {y,}>2 _, be a solution of Fq. (3.2.1), we say that
the solution has a prime period two if the solution eventually takes the form.:

"7¢7¢7¢7w7"‘

where ¢ and Y are distinct and positive.

Theorem 3.3.1. If k is even, then Eq. (3.2.1) has no nonnegative prime
period two solution.

Proof. Assume for the sake of contradiction that there exist distinct positive
real numbers ¢ and v, such that

"7¢7’(/}7¢7,l/}7"'

is a prime period two solution of Eq. (3.2.1).
As k is even, SO ¥, = Yn_k

now, ¢ and v satisfy the systems

_ptY+ Ly
¢_q+w+dw
and
_pto+Lo
V=t etds
So,

¢q+ oY +do =p++ Ly

Vg + o +doy =p+ ¢+ Lo.
By subtracting Eq. (3.3.2) from Eq. (3.3.1), we get

(¢ =)= =)+ LY —¢)

hence

W —=o)lg+L+1]=0.
Asqg+L+1#0,thenyy —p=0= 1 =¢

which contradicts the hypothesis of ¢ # .
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Theorem 3.3.2. If k is odd then we have following results:

1- The Eq. (3.2.1) has no nonnegative prime period two in these two cases:

o [ <1+4¢q
e d>1

2- If L>1+4q and d < 1, then Eq. (3.2.1) has a prime period two solution
"'7¢7w7¢7w7"'

where the values 1 and ¢ are the solutions of the quadratic equation
t* — (¢ + )t + o =0

Proof. 1- Assume for the sake of contradiction that there exist distinct and
positive real numbers ¢ and v such that

-'7¢7w7¢a¢>"'

is a prime period two solution of Eq. (3.2.1),

e k is odd then ¥, = y,41 and in this case ¢ and v satisfy the
following systems

¢:p+¢+L¢
q+ ¢ +do
and
w:p+¢+Lw
q+o+dyp
So,
g+ ¢+ dp? = p+ 1 + Lo (3.3.3)

Qo+ v+ dt =p+ o+ Ly
subtract Eq. (3.3.4) from Eq. (3.3.3), we have

0(¢ =) +d(¢* —v*) = (¥ — ¢) + L(¢ — )

— (@ —Y)g+do+v)] = (¢ —v)[-1+ L]

S0,
L—1-q L—(1+q)

y y (3.3.5)

(@+¢) =
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when L < 1+ ¢ then ¢+ < 0 and this contradicts the assumption
that ¢ and v are positive distinct real numbers.

e k is odd, from the previous steps we have,
¢q+ ¢+ d¢® = p+ P+ Lo (3.3.6)

g+ oY+ dy® = p+ ¢+ Ly (3.3.7)
By adding Eq. (3.3.6) and Eq. (3.3.7) we get,

q(o+ ) + 200 +d(¢* +9°) = 2p+ (¢ +¢) + L(o+1)
q(¢+ ) + 200 + d(¢* + 200 — 209 + %) = 2p+ (¢ + ) [L + L]
q(o+¢) + (2 —2d) +d(¢p+ ) = 2p+ (p+¢)[1+ L]

hence
PP(2—2d) = 2p+ (¢ + ) 1+ L] — d(¢p +¢)* — q(¢ + )
=2p+ (o +¢)[(1+ L) —d(¢+ ) —q

but ¢+ = L_;_q, substitute the value of (¢+1) in the last equation

G2 — 2d) = 2p + (#) [(1 L) —d (*) —q}

then

L—-1-

(2 — 2d) = 2p + 2 (Tq)
" [pd+ (L —1-g))
pd+(L—1—¢

oY =
d(1—d)

when d > 1 then ¢ < 0, this contradicts the assumption that ¢ and
1 are distinct and positive real numbers.

(3.3.8)

2- If L > (1+gq) and d < 1, then it is clear from Eq. (3.3.8) and Eq. (3.3.5)
that ¢ and v are two distinct real roots of the quadratic equation

» (L-1—¢ [pd+ (L —1—gq)]
t_(T>t+ an—a
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which have the following values

() ) ()
o= () () - (=)

The proof is complete.
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Theorem 3.3.3. [5] Assume that f € C[(0,00) x (0,00),(0,00)] such that
f(z,y)is increasing in x for each fized y, and decreasing in y for each fized x.

Let § be a positive equilibrium of Eq. (3.2.11), then every oscillatory solu-
tion of Eq. (3.2.11) has semi-cycles of length at least k.

Proof. The proof of this theorem will follow by using Mathematical Induc-
tion.

When k& = 1, then the proof of this result is presented in Theorem 1.7.4 in
[16], so we just show that if the theorem is true for £ = m — 1 then it will be
true when k = m.

Assume that {y,} is an oscillatory solution with m + 1 consecutive terms

YN_1, YN, - - -, YNtm—1 such that yy_; belong to the negative semi-cycle, and
the following terms belong to the positive semi-cycles.
So

YN-1 <Y < YNym—1-

From the previous assumption we can conclude that, when & = m — 1 then
every oscillatory solution of Eq. (3.2.11) has semi-cycles of length at least
m — 1 terms in the positive semi-cycles.

Now by using the monotonicity properties of the function f and the induc-
tion hypothesis we obtain

Yn+m = f(Yntm-1,yn-1) > f(4,9) = V.
Which shows that it has at least m terms in the positive semi-cycle.
Which completes the proof. O]

Theorem 3.3.4. [16] Assume that f € C[(0,00) X (0,00),(0,00)] is such
that f(x,y)is decreasing in x for each fized y, and increasing in y for each
fixed x.

Let g be a positive equilibrium of Eq. (3.2.11), then except possibly for the
first semi-cycle every oscillatory solution of Eq. (3.2.11) has semi-cycles of
length k.

Proof. In this proof we will use mathematical induction.
When k& = 1, then the proof of this result is presented in Theorem 1.7.1 in
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[16], assume that if the theorem is true when k£ = m — 1 then we will show
that is true for k = m.

Assume that {y,} is a solution of equation (3.2.11) with m + 1 consecutive
terms yy_1,Yn, ---, YN+m—1 Such that yy_; belong to the negative semi-
cycle, and the following terms belong to the positive semi-cycles.
So

UN-1 =Y < YN4m—1-

From the previous assumption we can conclude that, when & = m — 1 then
every oscillatory solution of Eq. (3.2.11) has semi-cycles of length m—1 terms
in the positive semi-cycles.

Then by using the monotonicity properties of the function f and the induc-
tion hypothesis we have

Yn+m = [ (Yntm-1,Un-1) < f(4,9) =¥
and
Yn+m+1 = [(Yntm yn) > f(5,9) = .
Thus
YN+m <Y < YN+m+1

Which shows that it has m terms in the positive semi-cycle, which completes

the proof.
m
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Theorem 3.3.5. [16] Assume that f € C[(0,00) X (0,00), (0,00)] and that
f(z,y) is increasing in both arguments.

Let § be a positive equilibrium of Eq. (3.2.11). Then except possibly for the
first semi-cycle, every oscillatory solution of Eq. (3.2.11) has semi-cycles of
length k.

Proof. We will use mathematical induction to proof this theorem.

When k = 1, then the proof of this result is presented in Theorem 1.7.3 in
[16], assume that is true for k = m — 1, then we will prove the theorem when
k=m.

Assume that {y,} is an oscillatory solution with m + 1 consecutive terms
YN—_1, YN, - - -y YN+m—1 1N & positive semi-cycle

yN*lZIya yNZZ_Ia SR yN+m71>g

with at least half of the inequalities being strict. From the previous assump-
tion we can conclude that, when & = m — 1 then every oscillatory solution
of Eq. (3.2.11) has semi-cycles of length m — 1.
Then by using the increasing character of f and the induction hypothesis we
obtain:

Yn+m = [(Yntm-1,yn-1) > f(4,9) =¥
So it followed by induction that all the terms of this solution belong to this
positive semi-cycle, which is a contradiction.

O

Theorem 3.3.6. [5] Assume that f € C[(0,00) x (0,00),(0,00)]and that
f(z,y) is decreasing in both arguments.

Let y be a positive equilibrium of Eq. (3.2.11), then every oscillatory solution
of Eq. (3.2.11) has semi-cycles of length at most k.

Proof. When k£ = 1, then the proof of this result is presented in Theorem
1.7.2 in [16], assume the theorem holds for £ = m — 1 then by using mathe-
matical induction we can prove the theorem for the case k = m.
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Assume that {y,} is an oscillatory solution with m + 1 consecutive terms
YN—1, YN, - - -5 YN+m—1 1N a positive semi cycles.
YN-1 > Y, YN > Yy -y YN+m—1 > Y, with at least half of the inequality begin
strict. We can conclude from the previous assumption that, when £ =m —1
then every oscillatory solution of Eq. (3.2.11) has semi-cycles of length at
most m — 1 terms in the positive semi-cycles.
Then by using the decreasing character of f and the induction hypothesis we
obtain,

YNtm = fUNtm-1,Un-1) < fF(,9) =¥

which completes the proof.

[
Let {yn}>°_, be a solution of Eq. (3.2.1) then the following are true:
(p q) Yn—k
i1 — 1= (d—L 3.3.9
Yn+1 ( ) 4+ U+ dynr ( )

Notice that 2= < 0, thus =1 < Z:L so we have the following equation:
q

(L) — yn— (’ZliL) Yn—k
1 —1=(d—1L <(d—1L a . (3.3.10
Yntd ( ) q+ Yn + dyn_s ( ) q+ Yn + dyn_s ( )
Also,
( _p+L> _ (1- Ziﬁ)yn+(p+q)[l_yn—k] (3.3.11)
T d G+ Yn + Ay e
Case I:

We will analyze the semi-cycles of the solution {y,}>° , under the assump-
tion that
p<gq, L<d and dp > Lq. (3.3.12)

By using Egs. (3.3.9), (3.3.10) and (3.3.11) we get the following results:
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Lemma 3.3.1. Assume that (3.3.12) holds, and let {y,}>_, be a solution
of Eq. (3.2.1), then the following statements are true:

. For some N >0, if yn_ k>p+d, then ynyi1 < 1.

For some N >0, if yy_ < p+d, then yn11 > 1.
For some N >0, if yv—_p < 1, then yyi1 > Zi—s.

For some N > 0, zfq+d<yN <1, thenp 7 <ynp < 1.

For some N > 0, zf’;+d S YN—ks - YUN—1, YN < 1,

then y, € [’;ﬂ:—s, 1] forn > N, where [’;i—s, } s an tnvariant interval of
Eq. (3.1.2).

L _

Z—i—_d <y<l.

Proof. Assume that Eq. (3.3.12) holds, then

1.

for some N > 0 if yy_p > pid , then we can conclude that yyi1 —1 <0

by using Eq. (3.3.10). So yn+1 < 1.

for some N > 0 and yy_; < L when yyx_i < then Yni1 — 1 >0

q+d’
but yn_p < =1 < p+L then by using Eq. (3.3.10) we can conclude that

Yni1 — 1 >Oand so yNH > 1.

. for some N > 0 if yy_r < 1 then from Eq. (3.3.11) we can conclude that

+L +L
yn+1 — 5 2 0,80 yvyr = T
for some N > 0, p+L < yn_kr < 1, we see from (1) that if yy_p > ’;is

then yyy1 < 1, also we see that if yy_r < 1 then yyi1 > L o6 we

q+d
conclude that p+ <yni < 1.
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5. if for some N > 0, then we see from (4) that if ”+L < yn_r < 1 then

q+d L < yni1 < 1. Also we can see that 1fp 7 < yN k,...,yN,l,yN <1,
then y, € [pis,l} for n > N by using Eqs. (3.3.10) and (3.3.11), so

[Zis, 1} is an invariant interval for Eq. (3.1.2).

6. By using (5), as [%, 1} is an invariant interval, then p+L <y<l.

]

Theorem 3.3.7. Assume that Eq. (3.3.12) holds. Then every non trivial and

oscillatory solution of FEq. (3.2.1) which lies in the interval [p+

el 1] oscillates

about y with semi-cycles of length at least k.

Proof. Assume that Eq. (3.3.12) holds then Eq. (3.2.1) is increasing in x

ptL
a1

that every non trivial and oscillatory solution of Eq. (3.2.1) has semi-cycle
of length at least k. O

and decreasing in y, Va,y € [ ] so we see by using Theorem (3.3.3)

Case 1I:

Now, we will analyze the semi-cycles of the solution {y,}°° , under the
assumption that
p>q, L>dand dp > Lg. (3.3.13)

The following results is a direct consequences of Egs. (3.3.9), (3.3.10) and
(3.3.11)

Lemma 3.3.2. Assume that (3.3.13) holds, and let {y,}>2_, be a solution
of Eq. (3.2.1), then the following statements are true:

1. For some N >0, if yy_r < 7;—5, then yny11 > 1.

2. For some N >0, if yn_p > Zi—s, then ynyi1 < 1.
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For some N >0, if yy_r > 1, then yn1 < & q+d

For some N >0, if 1 <yy_p < Ziﬁ, then 1 <yyi1 < B —.

. L
For some N >0, if 1 <yn—p, ..., yn—1,yn < 207,

then vy, € [1 p+L} forn > N. where [1 ptL ] s an invariant interval of

Y +d ) +d
Eq. (3.1.2).

Proof. Assume that Eq. (3.3.13) holds, then

1.

. for some N > 0 if yy_ , > btL

. By using (5), a [1 P+L} is an invariant interval, then 1 < y < 2=

for some N > 0, when yy_; < then yni1 — 1> 0but yy_x < < + <
p+L then by using Eq. (3.3.10) we can conclude that yy,q1 —1>0 and SO

Z/N+1 > 1.

d then we can conclude that yy, 1 —1 <0
by using Eq. (3.3.10). So yyy1 < 1.

. for some N > 0 if yy—x > 1 then from Eq. (3.3.11) we can conclude that

p+L
YN+ q+d = O S0 YN+1 < q+d'

. for some N >0, 1 < yny < p+d, we see from (1) that if yy_p < %
then yyi1 > 1, also we see that if yv_r > 1 then yyi1 < ’q% SO we

conclude that 1 < yyyq < B +d

. if for some N > 0, then we see from (4) that if 1 < yy_p < Pl then

Q+d

L . L
1 <yni1 < ’id. Also we can see that if 1 < yy_p,...,ynv_1,Un < Zid’

then y, € [l,piﬂ for n > N by using Egs. (3.3.10) and (3.3.11), so

[1, Z%ﬂ is an invariant interval for Eq. (3.1.2).

+L

+d q+d’



3 DYNAMICS OF Xy41 = :jg;xig;}vv—_i 60

O

Theorem 3.3.8. Assume that Eq. (3.3.13) holds. Then every non trivial and

oscillatory solution of Eq. (3.2.1) which lies in the interval [1, Zi—s] oscillates

about y with semi-cycles of length at most k.

Proof. Assume that Eq. (3.3.13) holds then Eq. (3.2.1) is decreasing in both

1. ptL

arguments, Y,y € [ } so we see by using Theorem (3.3.6) that every

) g+d

non trivial and oscillatory solution of Eq. (3.2.1) has semi-cycles of length at

most k. O
Case III:

We will analyze the semi-cycles of the solution {y,}°° , under assumption
that
p=qandd= L. (3.3.14)

In this case Eq. (3.3.11) reduces to
(p + Q) [1 — yn—k}

o —1= 3.3.15
Yt G+ Yn + Ay ( )

so, the following results follow directly:

Lemma 3.3.3. Let {y,}2° _, be a solution of Eq. (3.2.1), and assume that
(3.3.14) holds, then the following statements are true:

1. For some N >0, yn_x <1, then ynyy1 > 1.

2. For some N >0, yn_x =1, then yyy1 = 1.

3. For some N >0, yn_x > 1, then yni1 < 1.

Proof. Assume that Eq. (3.3.14) holds, then
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1. for some N > 0 if yy_r < 1 then we conclude that yy.1 —1 > 0 and so
yn+1 > 1 by using Eq. (3.3.15).

2. forsome N > 0if yy_j = 1 then we get yn1—1 = 0 from Eq. (3.3.15). So
YUny1 =1

3. for some N > 0, if yy_p > 1, then yyi11 — 1 < 0, which implies yyy1 <1

]

Corollary 3.3.1. Assume that Eq. (3.3.14) holds. Then every non trivial
solution of Eq. (3.2.1) oscillates about the equilibrium point 3.

Proof. We notice that by using lemma (3.3.3) if yy_ < 1, then yy,q1 > 1,
also if yn_j > then yyi; < 1, which means that the solution {y,}>° ,
oscillates about the equilibrium point y= 1. ]
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3.4 Global Stability

In this section we consider the global asymptotic stability of Eq. (3.2.1).

In section (3.2), we investigated local stability of the positive equilibrium
point so it is sufficient to investigate the globally attractive of positive equi-
librium point.

Now, we present some theorems which will be used in this section.

Theorem 3.4.1. [22] [16] Let I = [a,b] be some interval of real numbers
and assume that

f : [a, b] X [a’ b] - [a7b]
s a continuous function satisfying the following properties:

(a) f(x,y) is non decreasing in x, and non increasing in y where x,y € |a, b|.

(b) If (m,p) € [a,b] x [a,b] is a solution of the system.

m = f(m.p) and p= f(u,m),

then m = p.
Then Eq. (3.2.11) has a unique equilibrium point y and every solution of
Eq. (3.2.11) converges to y.

Proof. Set
mo=a and py=>

and for i =1,2,... set
Hi = f(Mi—l; mi—l) and m; = f(mi—la Ni—1)~
Now observe that for each ¢ > 0,

mo<mp <---<m; < - <y
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and
m; <y < p; for k>20+ 1.
Set
m= lim m; and pu= lim pu,.
Then

@ > limsupy; > liminfy; > m

1 ——00

and by the continuity of f,

m:f(mmu) and :U’:f(:u7m)

In view of (b),

from which the result follows.

Theorem 3.4.2. [16] Let I = [a,b] be an interval of real numbers

and assume that
f : [CL, b] X [av b] I [CL?b]

15 a continuous function satisfying the following properties:

(a) f(x,y) is non increasing in each of its arguments.

(b) If (m, ) € [a,b] X [a,b] is a solution of the system

p=f(m,m) and m = f(u,p),

then m = p.

63

Then Eq. (3.2.11) has a unique equilibrium point y and every solution of

Eq. (3.2.11) converges to .

Proof. Set
mo=a and py=2>=
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and for i =1,2,... set

i = fmi—i,mi1) and m; = f(pi-1, pio1).
Now observe that for each i > 0,

mop<my < -+ <my <<y <y < g

and
m; <y < p; for k>2041.

Set
m = lim m; and p= lim u,.

Then clearly
@ > limsupy; > liminfy; > m

1 ——00

and by the continuity of f,

p=f(m,m) and m = f(u, p).

In view of (b),

from which the result follows.
O

Theorem 3.4.3. [22] [9] Let I = [a,b] be an interval of real numbers and
assume that
f : [CL, b] X [a’7 b] - [a7b]

1 a continuous function satisfying the following properties:

(a) f(x,y) is non increasing in x for each fizred y and f(x,y) is non decreas-
ing in y for each fived x, where x,y € |a,b].

(b) The difference Eq. (3.2.11) has no solutions of prime period two in [a,b].
Then the difference Eq. (3.2.11) has a unique equilibrium point § € [a, b]
and every solution of it converges to y.



3 DYNAMICS OF Xy41 = :jg;xig;}vv—_i 65

Proof. Set
mo=a and o =2>=

and for i =1,2,... set

Hi = f(mz?l,/ﬁifl) and m; = f(uifl,mi,l).
Now observe that for each ¢ > 0,

mo<my <o Smp < < g <o < < g

and
m; <y < p; for k>21+ 1.
Set
m= lim m; and p= lim p,.
1—>0Q0 1—>00
Then clearly
p > limsupy; > liminfy;, > m

§—00 3

and by the continuity of f,

p=f(m,p) and m= f(u,m).

In view of (b),
from which the result follows.
O

Theorem 3.4.4. [16] Let I = [a,b] be an interval of real numbers and as-
sume that

f : [CL, b] X [a’ b] - [a7b]
s a continuous function satisfying the following properties:

(a) f(x,y) is non decreasing in each of its arguments.

(b) If (m, ) € [a,b] X [a,b] is a solution of the system

p=f(p,p) and m = f(m,m)
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then m = p.
Then Eq. (3.2.11) has a unique positive equilibrium point, and every pos-
itive solution of Eq. (3.2.11) converges to .

Proof. Set
mo=a and py =10

and for 1 =1,2,... set

My = f(Hz‘—l; Mz‘—l) and m; = f(mi—hmi—l)-

Now observe that for each ¢ > 0,

mo <my <<y <o <y <ees < g < g

and
m; < yp < p; for k> 2i+ 1.

Set
m = lim m; and p= lim p,.

1——00 1—00

Then clearly
@ > limsupy; > liminfy; > m

1 ——00

and by the continuity of f,

m = f(m,m) and p= f(u, p).
In view of (b)

from which the result follows.
O

From the above discussion we have the main result of this section as
follows:
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Theorem 3.4.5. Assume that p > q, L > d and dp > Lq then the
equilibrium point of Eq. (3.2.1) is globally asymptotically stable in the

1. L

interval [ |

Proof. We use Theorem (3.4.2), assume that p > ¢, L > d and dp > Lq and

suppose that [1, pq—i{; is an invariant interval for the function
p+x+ Ly
xr,y) = ——"74H—.
f(x) q+x+dy

We saw that in this interval the function f(x,y) is decreasing in both argu-
ments, so part (a) of Theorem (3.4.2) holds.

Now, let (m, ) € [a,b] X [a,b] is a solution of the system

f(m,m) =p and f(u,p) =m.
then
p+p+ Ly p+m+ Lm
m=—————— and = —

q+p+dp a qg+m—+dm’
But we saw that this equation has no period two solution
“when v, = y,_k, k is even 7.

So, the only solution is m = pu.

The two conditions of Theorem (3.4.2) hold, then every solution of Eq. (3.2.1)

p+L
) gtd |

So the equilibrium point ¥ is globally attractive.

converge to y in the interval [1

Theorem 3.4.6. Assume that p < q, L < d and dp > Lq then the
equilibrium point of Eq. (3.2.1) is globally asymptotically stable in the

: p+L
interval [qu_d’ 1] )
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Proof. We use Theorem (3.4.1). Assume that p < ¢, L < d and dp > Lq

p+L

and suppose that [qu—d,

1] is an invariant interval for the function

_ptax+ Ly

We saw that in this interval the function f(x,y) is increasing in x and de-
creasing in y, so part (a) of Theorem (3.4.1) holds.

Now, let (m, ) € [a,b] X [a,b] be a solution of the system

flm, ) =m and f(u,m) = u
then
_ptm+ Ly _ptpt+Lm

m =
qg+m+du a q+p+dm
Then m = pu.

So, the two conditions of Theorem (3.4.1) hold. Then by Theorem (3.4.1)

every solution of Eq. (3.2.1) converge to ¢ in the interval %, 1{. So the

equilibrium point 7 is globally attractive.

Since gy is asymptotically stable, then by Definition (3.1.2), 3 is globally
asymptotically stable.
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4 The Special cases afyABC =0

In this chapter we will study the character of solution of Eq. (3.1.1) where
one, two or more of the parameters in Eq. (3.1.1) are zeros. There are many
equations that arise by considering zero parameters.

Notice that some of these equations have been studied and few of them are
meaningless such as the case when all the parameters in the denominator or
the numerator are zero.

4.1 One Parameter =0

In this section we will study the character of the solution of Eq. (3.1.1) where
one parameter in Eq. (3.1.1) equals zero. There are six cases, namely:

o+ 6*7% + YLn—k

T = L n=0,12, (4.1.1)
Tps1 = — tﬁ”%:i""“, n=0,1,2,... (4.1.2)
Tl = O‘;ixi ZZ:_”;’“ n=0,1,2,... (4.1.3)
Tup = g; ixg,%_k n=01,2,... (4.1.4)
Tar1 = = fg:f‘c’;nk, n=012,... (4.1.5)
L L n=0,1,2,... (4.1.6)

A+ Bz, +Cxypt’

Where the remaining parameters a, 3, v, and A, B, C are non-negative
real numbers and the initial conditions x_g,...,x_1,xo are arbitrary real
numbers, and the denominator is nonzero.
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4.1.1 The Case C =0: z,4; = %

Lemma 4.1.1. The change of variables x, = %yn, reduces Eq. (4.1.1) to the

difference equation

sy = PGt Y
n+1 1 + Un

(4.1.7)

where p = ‘1“4—5, q= %, andr = % and the initial conditions

Yks - - -, Yo are arbitrary nonnegative real numbers.

Proof. Substitute x,, = %yn in Eq. (4.1.1), we get:

A o a+ %yn + %yn—k
Bt = A+ By,

then
y _ A [?4_13 + %yn + %ynfk}
n+1 A [1 + yn]

set p = ‘3‘4—5, q= %, and r = 7, then we get Eq. (4.1.7).

Eq. (4.1.7) was investigated by R.M.Sebdani and M.Dehghan in [21].

[
4.1.2 The Case B=0: 7,1 = %m
Lemma 4.1.2. The change of variables x,, = &y, reduces Eq. (4.1.2)
to the difference equation
Ly, n—
yyy = 2T f Tk 0.1, (4.1.8)
q Yn—k

—aC o _ A _8
Where p = T 4= andL—V.

And the initial conditions y_y, . .., yo are arbitrary nonnegative real numbers.
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Proof. Substitute ,, = Zy, in Eq. (4.1.2) we get,

2

'Yy o a+ﬂ_gyn+%yn—k
~In+1 —
¢ A+ %yn—k

SO,

2l [‘;—9 + 2y, + yn_k}
Yn4+1 =
Y |:% + yn—ki|
— aC A _ B
set p = T 4= andL—W.
Then we get Eq. (4.1.8). O

The only positive equilibrium point of Eq. (4.1.8) is

(L+1—-q¢)+/(@—L—-1)2+4p
> .

j =
And the linearized equation is
—Llg+y) , p+Ly)—q
—\2 Zn —\2
(¢+9) (¢ +9)

Theorem 4.1.1. Assume that p+ L > q, where y > L,y > 1 and L <1
then equilibrium point y of Eq. (4.1.8) s locally stable.

Zn—k — 0.

The proof follows immediately from Theorem (3.2.2).

Theorem 4.1.2. Let {y,}>_, be a solution of Fq. (4.1.8), then Eq. (4.1.8)

n=—=k
has no solution of prime period two in the following two cases:

o [ is even.

e kisoddand g+ L >1
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Proof. Let
"7¢7¢7¢7¢""

be a period two solution of Eq. (4.1.8), where ¢ and 1 are real numbers.

k is even, then we have the following systems:

p+v+ Ly p+o+Lo
p=——— and p = —F—. 4.1.9
q+ ¢+ “.19)
By simplifying (4.1.9) we obtain,
(¢—¥)lg+1+L]=0
asq# —(1+ L) then ¢ = 1.
e If k is odd, then we have the following systems
p+Lo+vy p+Ly+¢
YV=———"—and ¢p = ———— 4.1.10
q+v q+¢ ( )
simplifying the relation in Eq. (4.1.10) to get,
(@—=Y)g+(o+¢)+L—-1]=0
— ¢+ =1—(¢+ L) when (L +q) > 1,then ¢+ <0
and this is a contradiction.
S0, ¢ =1
O

Theorem 4.1.3. Assume that p+ L > q and y > 1 then the equilibrium
point y of Eq. (4.1.8) is globally attractive on the interval [1, %]
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Proof. When p+ L > ¢, and x > 1 then the function

p+ Lx+y
fry) = —"77—
(z,y) s

is decreasing in y and increasing in x, where x,y € [1, ’%L} .

We can easily see that the equilibrium point ¢ is globally attractive,
by using Theorem (3.4.1).

]

Theorem 4.1.4. Assume that p+ L > q and y > 1 then every oscillatory
solution of Eq. (4.1.8) has semi-cycles of length at least k.

The proof follows from Theorem (3.3.3)

Eq. (4.1.3) was investigated by A.Farhat in [13] and by A.E.Alawench
in [3].
Also, Eq. (4.1.4) was investigated by M.Abu Alhalawa in [2].

—-0 - _ At YTk
4.1.3 The case ﬁ =0: L+l = W—Fﬂﬁﬁn—k

Lemma 4.1.3. The change of variables x,, = &y, reduces Eq. (4.1.5)
to the difference equation

p + Yn—k
a1l = n=20,1,... 4.1.11
I Ayt Yo ( )
Where p = OW‘—(;, q= % and d = g.
And the initial conditions y_g, ...,y are arbitrary nonnegative real num-

bers.
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Proof. Substitute ,, = &y, in Eq. (4.1.5) we get,

o+ V%yn—k
C
A + %Yyn + F’Yyn—k

Ty =
C n+1

cancel % from both side

v |:Ofy_§ + yn—k}

and d = 2 we obtain Eq. (4.1.11).

:}yn+1 =

= |

The only positive equilibrium point of Eq. (4.1.11) is

(1—q)++/(qg—1)2+4p(d+1)
2(d + 1)

g:

And the linearized equation is

dpty)  p-a-dy
(g+dy+9)?>™" (¢+dg+gy)?> """

Theorem 4.1.5. The equilibrium point

(1—q)+ /(¢ —1)2+4p(d+1)
2(d + 1)

g:

15 locally stable when p > q+d, y < 1.

The proof follows immediately from Theorem (3.2.2).

Theorem 4.1.6. Let {y,}7>_, be a solution of Eq. (4.1.11), then the follow-
mg are true:

1. Ifkis odd and q > 1, then Eq. (4.1.11) has no solution of prime period two.
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2. If k is even, then Eq. (4.1.11) has no solution of prime period two.

Proof. Let
"7¢7¢7¢7w""

be a period two solution of Eq. (4.1.11), where ¢ and 1 are real numbers.

1. If k is odd, then y,,_x = y,+1 and ¢ and ¥ satisfy the following systems:

. pto  pt
O rdv+e VT T ds+ e

simplifying the relation in Eq. (4.1.12) we obtain,

(4.1.12)

(0—U)[g—1+¢+¢]=0

as ¢ # 1 then ¢+ =1—¢q, when ¢ > 1
this is obvious contradiction.

2. If k is even, then vy, _, =y, and ¢, ¢ satisfy the following systems:

. ptv _ pto¢
P rdbre MMV T v ag e 1)
Simplifying relation (4.1.13) we obtain ,
9(¢—¢) = (¥ = ¢)

— (@—¢)g+1]=0
as ¢ # —1 then ¢ = 1.

So, Eq. (4.1.11) has no prime period two solution.
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Theorem 4.1.7. Assume that p > q+d and y < 1 then the equilibrium point
g of Eq. (4.1.11) is globally attractive on the interval [%1, 1]

Proof. When p > ¢+ d and x <1 then the function

Pty

f(l’,y):m

is decreasing in both arguments.
And as the Eq. (4.1.11) has no solution of prime period two, then by using
Theorem (3.4.2) we see that, the equilibrium point 3 is globally attractor. [J

Theorem 4.1.8. Assume that p > q+ d andy < 1 then every oscillatory
solution of Eq. (4.1.11) has semi cycles of length at most k.

The proof follows from Theorem (3.3.6).

BT+ Tn—k

4.1.4 The case a = 0: Zy11 = 50 c0 ;
n n—

Lemma 4.1.4. The change of variables x,, = %y, reduces Eq. (4.1.6)
to the difference equation

DYn + Yn—k
] = 4.1.14
I T dyn + gk ( )
where p = %, q = %, and d = g and the initial conditions y_g, ...,y are

arbitrary nonnegative real numbers.

Proof. Substitute z,, = Zy, in Eq. (4.1.14), we get

BYn + &Y
A + %yn + %ynfk

ly =
[ohdan
cancel % from both side

7 2y + v

v [A + Sy + yn_k}

Y

:}yn+1 —

set p = %, q= % and d = g we obtain Eq. (4.1.14).
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The Eq. (4.1.14)has two equilibrium points

p+1l—gq

y=0 and y= 1)

And the linearized equation is
pg+ (p—d)y g+ (d—-p)y
n - T 4= T N9 n + T = . N9 n—k — O
o <@+dy+w2z (¢+dg+9)?) "

Theorem 4.1.9. Assume thatp > q+d andp > d,d > 1 and dy > p then

the equilibrium point
__ptl—gq
Y (d+1)

18 locally stable.

The proof follows immediately from Theorem (3.2.2).

Theorem 4.1.10. Let {y,}>° _, be a solution of Eq. (4.1.14), then Eq. (4.1.14)
has no solution of prime period two in the following two cases:

1. If k1s odd and p+ q > 1.
2. If k is even and q # 1 + p.

Proof. Let
"7¢7¢7¢7¢""

be a period two solution of Eq. (4.1.14), where ¢ and 1 are real numbers.

1. If k is odd, then y,,_r = y,11 then ¢ and ¥ satisfy the following systems:

b= pY+ @

_ po+u
= Ttdv+ o and ) = ————

Y (4.1.15)
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Thus, we have

(—@)la—1+p+o+¢]=0

if ¢ # 1 then we have ¢ +19 =1 — (p+ ¢), when p + ¢ > 1 then this is a
contradiction as ¢ and 1 must be positive.

2. If k is even, then ¥y, _, = vy, and ¢, ¢ satisfy the following systems:

pY+ _ ppt+o

_ d o= 4.1.16
P vdbre VT et (L10)
hence, we have
(0—¢)p+q+1=0
when ¢ # —(1+p) then ¢ = 1.
So, Eq. (4.1.14) has no prime period two solution.
]

Theorem 4.1.11. Assume that p > q + d where p > d then the equilibrium
point y of Eq. (4.1.14) is globally attractive on the interval [1, ﬁ].

Proof. When p > g+ d and p > d then the function

pT+y

f(ﬂf,y):m

is decreasing in y where y € [1, ﬁ].

And the function f(x,y) is increasing in « when p > ¢+ d andp > d.

Then by using Theorem (3.4.1) we can see that, the equilibrium point

- p+l—
Y= p(d+1)q

is globally attractive on the interval [1, q%l} :
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Theorem 4.1.12. Assume that p > q+d where p > q then every oscillatory
solution of Eq. (4.1.14) has semi-cycles of length at least k.

The proof follows from Theorem (3.3.3).

4.2 Two Parameters are zero

In this section we will study the character of solution of Eq. (3.1.1) where
two parameters are zero. There are fifteen cases for this equation, namely:

YTn—k

T = e e P=0L2 (4.2.1)
Trp1 = A+Bxixi G n=012. (4.2.2)
e an‘i G n=012. (4.2.3)
oy = 2F ﬁx”; Tk 01,2, (4.2.4)
ooy = 2 ﬁxg); Tk 01,2, (4.2.5)
ooy = 2 ﬁé; t:m’”"“ n=01,2,... (4.2.6)
Ty = %, n=012,... (4.2.7)
Tril = %, n=0,1,2,... (4.2.8)
Top1 = %, n=012,... (4.2.9)
Tl = %, n=0,1,2,... (4.2.10)

& ¥ Vont n=012,... (4.2.11)

TIn+l = &~
1 A + CZL'n_k
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A+ YT,

Tan = gt =012 (4.2.12)
Tt = %, n=0,1,2,... (4.2.13)
Tl = ;:T%, n=012... (4.2.14)
Tril = %, n=0,1,2,... (4.2.15)

Where the parameters «, 3, v and A, B, C are non-negative real numbers
and the initial conditions x_y, ..., x_1, zo are arbitrary real numbers, and the
denominator is nonzero.

Of these equations, Eq. (4.2.4) is linear difference equation.
Eq. (4.2.15) is a Riccati equation.
The positive equilibrium point of Eq. (4.2.15) is globally asymptotically sta-
ble.

4.2.1 The Case a==0: x,.1 = —A+Bli7:ckx —

Lemma 4.2.1. The change of variables x,, = &y, reduces Eq. (4.2.1)
to the difference equation

Yn—k
Ynt1 = (4.2.16)
D+ QYn + Yn—k
where p = % q= g and the wnitial conditions y_y,...,yo are arbitrary non-
negative real numbers.

Proof. Substitute z,, = Zy, in Eq. (4.2.1), to get

%%ynfk
A + %yn + %yn—k

Tyl =
C n+1
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then
Y1 = VYYn—k
n+1 —
2} [% + &y + yn_k]
set p = %, q= g to get Eq. (4.2.16). m

The equilibrium points of Eq. (4.2.16) are y = 0 and y = ﬁ.

And the linearized equation

qy p+aqy
Zn+1 + — — 5 *n + - < — __) Rn—k — 0
T+ qy +9)? (p+ qy + 0)?

Theorem 4.2.1. The equilibrium point y = 0 s locally stable when p > 1.

When p < 1 then the equilibrium point y = % 18 unstable.

The proof follows immediately from Theorem (3.2.2).

Theorem 4.2.2. Let {y,}°° _, be a nonnegative solution of Eq. (4.2.16),
then the following are true:

o [fk is even, then Eq. (4.2.16) has no solution of prime period two.

o [fkis odd, then Eq. (4.2.16) has no solution of prime period two when
p>1.

Proof. Let
"'7¢7¢7¢7¢7"‘

be a period two solution of Eq. (4.2.16), where ¢ and 1) are positive and
distinct, then

e If k is even, then we have:
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so, we obtain

po—¢)=v—¢p=(¢—¢)(p+1)=0
as p # —1, then ¢ = 1), and this is a contradiction.

e If k£ is odd, then we have

¢

B B (0
Cptqv+é v

¢ o ptaot

hence,
(@—v)[p+(¢+1)—1=0

= ¢+ =1—p when p > 1 then ¢ = 1 and this is a contradiction,
as ¢, 1 are positive hence, ¢ = 1.

So, Eq. (4.2.16) has no prime period two solution when k is odd and
p > 1or k is even.

]

Theorem 4.2.3. Assume that p > 1 then the equilibrium point § = 0 is
globally attractive.

Proof. Let
Y

T,y = ———
fz,y) pp——
where f: (0,00) x (0,00) — (0, 00) is continuous function.

As f(x,y) is decreasing in x and increasing in y, V z,y € (0,00), then by
using Theorem (3.4.3), we can prove that the equilibrium point g is globally
attractive. O

Theorem 4.2.4. Every solution of Eq. (4.2.16) has semi cycles of length k.

Proof. As f(x,y) is decreasing in = and increasing in y, so by using
Theorem (3.3.4), we can prove that every solution of Eq. 4.2.16 has semi-
cycles of length k.

O
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4.2.2 The Case a=7 =0: x,,1 = #&h%

Lemma 4.2.2. The change of variables x,, = %yn reduces Eq. (4.2.2)
to the difference equation

Un
Dt Wk + Un ( )

where p = %, q= % and the initial conditions y_y, ..., yo are arbitrary
nonnegative real numbers.

Proof. By substituting z,, = %yn in Eq. (4.2.2) we can get easily Eq. (4.2.17).
0

The equilibrium points of Eq. (4.2.17) are y =0 and § = %q”.

And the linearized equation

Zn41 (_p—irqgj )z —|——q37 Zn_p =0

n+1 — — — n — — n—k — U.
(p+qy+7)° (p+aqy+7)°

Theorem 4.2.5. The equilibrium point iy = 0 is locally stable when p > 1.

And the equilibrium point §j = % 15 unstable when p < 1.

The proof follows immediately from Theorem (3.2.2).

Theorem 4.2.6. The Eq. (4.2.17) has no solution of prime period two.

Proof. Let
OV, 0,1,

be a period two solution of Eq. (4.2.17), where ¢ and 1 are positive and
distinct, then

e If k is even, then we have:

_ Y _ ¢
BT and (4.2.18)

¢ Cpt+qot ¢
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Simplifying the relation in (4.2.18), we get
pd—Y)=v—9p= (6 -Y)(p+1)=0

since ¢ # 1 so we have p = —1, and this is a contradiction.

o If k is odd, then we have

_ Y _ ¢
¢= and ¢_p+q¢+¢'
Simplify the relation in (4.2.19), and we obtain
(@ =) p+1+a(6+¢)]=0

since ¢ # 1 then we have ¢ + ¢ = %, and this is a contradiction
as ¢, 1 are positive hence ¢ =

(4.2.19)

So, Eq. (4.2.17) has no solution of prime period two.

]

Theorem 4.2.7. Assume that p > 1 then the equilibrium point §y = 0 of
FEq. (4.2.17) is globally attractive.

Proof. Let
x

f<x’y)_p+qy+:€
where f : (0,00) x (0,00) — (0, 00) is continuous function.
As f(z,y) is increasing in x and decreasing in y, V x,y € (0,00), then by
using Theorem (3.4.1), we can prove that the equilibrium point g is globally
attractive. [

Theorem 4.2.8. Fvery solution of Eq. (4.2.17) has semi-cycles of length at
least k.

Proof. As f(z,y) is increasing in x and decreasing in y, then the proof fol-
lows immediately by using Theorem (3.3.3).
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4.2.3 The Case ﬁ:’y =0: Ln+1 = m

Lemma 4.2.3. The change of variables x, = \;—f reduces Eq. (4.2.3) to the
difference equation

3
Ynt1 =D+ — +

(4.2.20)
Yn Yn—k
where p = \% and the initial conditions y_g, ..., yo are arbitrary nonnegative
real numbers.
Proof. Substitute z,, = ‘;—f in Eq. (4.2.3) we obtain,
va o o)
Ynt1 A4 Bay Ve
Yn Yn—k
hence,
r 1
— A, B C
Yn+1 5T ™ + -
S0,
A N B . C
Ynt1 = —F= T —
* \/a Un Yn—k
set, \/Aa =p we get Eq. (4.2.20).
O

The only positive equilibrium point of Eq. (4.2.20) is
y=p+ /P +4B+C).

And the linearized equation

Znt1 t =2+ 2k = 0.
ooy

Theorem 4.2.9. The equilibrium point ij = p++/p? + 4(B + C) of Eq. (4.2.20)
15 locally stable.

The proof follows immediately from Theorem (3.2.2).
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Theorem 4.2.10. Let {y,}>° , be a nonnegative solution of Eq. (4.2.20),

n=—=k
then the following are true:

o If kis even, then Eq. (4.2.20) has no solution of prime period two.

o If k is odd, then Eq. (4.2.20) has prime period two solution and this
solution has the form
B-C A B-C

"7¢7 ¢ 7¢7 ¢ yc

Proof. Let
"'7¢7¢7¢7¢7"‘

be a period two solution of Eq. (4.2.20), where ¢ and 1 are positive and
distinct, then

e If k is even, then we have:

o= B it v P am

Simplifying the relation in (4.2.21), we obtain

p—9)=0= =1
so, when k is even then the Eq. (4.2.20) has no solution of prime period

two.

o If k is odd, then we get

¢=p+§+% and ¢:p+§+% (4.2.22)

from relation (4.2.22) we get,
(@—v)[pv+C—-B] =0
B—

since ¢ # 1 then ¢ = TC
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So, when k is odd, then the prime period two solution of Eq. (4.2.20)

have the form. B_C B_ O
. 7¢’ ) ¢7 PR
¢ o

and this complete the proof.

]

Theorem 4.2.11. The equilibrium point §j = p++/p* + 4(B + C) of Eq. (4.2.20)
1s globally attractive.

Proof. The function

B C
fla,y)=p+—+—
T Y

is decreasing in both arguments, and the Eq. (4.2.20) has no solution of prime
period two when k is even, then by Theorem (3.4.2) the equilibrium point
i is globally attractive. [

Theorem 4.2.12. Every solution of Eq. (4.2.20) has semi-cycles of length
at most k.

Proof. As f(x,y) is decreasing in both arguments, then the proof follows
from Theorem (3.3.6).

m
4.2.4 The Case A=C =0: 2, = %ﬁ"*
Lemma 4.2.4. The Fq. (4.2.5) is reduced by the change of variables
Ty = % + %yn to the difference equation
p + qQYn—k
i = ——2F 4.2.23
Yn+1 1+, ( )
where p = %—f + % and g = L, and the initial conditions y_yg, . .., Yo

are nonnegative real numbers.
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Proof. Set x, = % + %yn,then substitute the value of z,, in Eq. (4.2.5),
we get

B, B _atBpltul [ty
BB B2 1+ .
thus,
2 (07
B g 1%+ (14 yn) + 21+ yns)
Bt B[+ yn)
(%_B+%)+%yn—k
= Un = .
Yot 1+ y,

By letting, p = %—f + % and ¢ = %, we get Eq. (4.2.23).

The Eq. (4.2.23) was investigated in [9], by Douraki, Dehghan
and Razzaghi.

4.2.5 The Case B=A =0: z,,, = atBontyTn—k

CI",]C

Lemma 4.2.5. The change of variables v, = & + Zyn reduces Eq. (4.2.6)
mto equation

D+ qYn
t] = —————— 4.2.24
Yn+1 1+ unr ( )

where p = % and q = g with p,q € (0,00) and the initial conditions
Y_ky - -+, Yo are nonnegative real numbers.

Proof. Substitute z,, = & + Zy, in Eq. (4.2.6)

we get

v, et Bl ] 3 A

¢ CZ i+ 1]
then

2 B+ ya) + (L4 yos)
g = (yn—k + 1)
9+ 50+ )
= Ynt1 =

Yn—k + 1
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set p = % and ¢= g, we get Eq. (4.2.24).

The Eq. (4.2.24) was investigated in [7], by Dehghan and Sebdani.
[l

Eq. (4.2.7) was investigated by S.Abu Baha in [1], and Eq. (4.2.8) was
investigated by A.Farhat in [13].

4.2.6 The Case a=C =0: 7,4, = %

Lemma 4.2.6. The change of variables x, = %yn, reduces Eq. (4.2.9)
to the difference equation

Yn + PYn—k
' q+ Yn
where p = % and q = % with p,q € (0,00) and the initial conditions
Y_ky -+, Yo are nonnegative real numbers.

Proof. Substitute x,, = %yn in Eq. (4.2.9),

we get
B, By + 7Ly
HIn+l —
B A+ By,

then
& [yn + %yn_k]

3 [%Hﬁ}

By, letting p = % and q = % we get Eq. (4.2.25).

Yn+1 =

Eq. (4.2.25) was investigated in [23] by Dehghan and Sebdani.
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4.2.7 The Case § =A =0: z,,, = B::ng;_:

Lemma 4.2.7. The change of variables x,, = &y, reduces Eq. (4.2.10)
to the difference equation

p + Yn—k
Ynt1 = ——— —— (4.2.26)
qYn + Yn—k
where p = ‘3;—9 and g = g and the initial conditions y_g, . ..,yo are nonnega-

tive real numbers.

Proof. Substitute z, = %y, in Eq. (4.2.10)

we get,
r . o+ v%yn—k
Cyn+1 B%yn n C%yn—k
then o
%é,_2 + Yn—k
Yn+1 = 5
gyn + Yn—k

set p = ‘;—g and ¢ = g, we get Eq. (4.2.26).
]

The Eq. (4.2.26) was investigated by Devalut, Ladas and Kosmala in [8].

4.2.8 The Case 6 =B =0: z,.1 = Zigfiniz

Lemma 4.2.8. The change of variables x, = Zy, reduces Eq. (4.2.11) to
the difference equation

p =+ Yn—k
Yn+1 = — 4.2.27
LRV (4.2.27)
where p = ";—g and q = % and the initial conditions y_y, ..., yo are arbitrary

nonnegative real numbers.

Proof. Substitute x, = Zy, in Eq. (4.2.11), to get

v a+ %yn—k
_yn 1 —_
C - A + %yn—k
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then
Y [?[y_g + ynfk]
Ynt1 = —F 7
set p = ?‘Y—E and g = % to get Eq. (4.2.27). O

The only positive equilibrium point of Eq. (4.2.27)

__ (—a)+y/(a=1)+4p

sy 5

And the linearized equation

(r—q)
Zn41 — Wzmk = 0.

(1=q)++/(g—1)2+4
2

Theorem 4.2.13. The equilibrium point iy = 2 is locally stable

when p > q.

The proof follows immediately from Theorem (3.2.2).

Theorem 4.2.14. Let {y,}>° _, be a nonnegative solution of Eq. (4.2.27), then
the following are true:

o If kis even, then Eq. (4.2.27) has no solution of prime period two.

o Ifkis odd and q < 1, then Eq. (4.2.27) has a solution of prime period
two of the form,

"7¢71_q_¢7¢71_q_¢7¢7"'

Proof. Let
"'7¢7¢7¢7¢7"’

be a period two solution of Eq. (4.2.27), where ¢ and 1 are positive and
distinct, then
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e If k is even, then we have the following systems:

_ bty p+o

[0) and Y =—— 4.2.28
q+1 q+¢ ( )
Simplifying Eq. (4.2.28) we obtain,
(@—¢)lg+1]=0
as q # —1, so ¢ = .
e If k is odd, then we have
pt+o pt
p=—— and Y =—— 4.2.29
q+¢ pt ( )
simplifying the relation in Eq. (4.2.29) we get,

(@—¢)lg+(o+)—1]=0

— ¢+ 1Y =1—q when ¢ > 1 then ¢ = ¢, and when ¢ < 1 then
Eq. (4.2.27) has prime period two solution of the form

"7¢71_q_¢7¢71_q_¢7¢7"'

O
4.2.9 The Case 3 =C =0: z,, = ﬁ:—z’;;"
Lemma 4.2.9. The change of variables x, = %yn reduces Eq. (4.2.12)
to the difference equation
p + qQYn—k
] = —— % 4.2.30
Yn+1 1+, ( )
where p = j—‘j and q = % and the initial conditions y_y, ...,y are nonneg-

ative real numbers.
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Proof. Substitute z, = 4y, in Eq. (4.2.12)
we get,
A - a+ ’Y%ynfk
Eyn—i-l - A—l—B%yn
then g -
a2t AYn—k
I+ yn
set p = 3—5 and ¢ = %, we get Eq. (4.2.30).

Yn+1 =

[]

The Eq. (4.2.30) was investigated by M.J.Douraki, M.Dehghan and M.Razzaghi
in [9].

4.2.10 The Case y = A =0: 2,4, = —ijigzn,k

Lemma 4.2.10. The change of variables x,, = %yn reduces Eq. (4.2.13)
to the difference equation

P+t Yn
Ynt1 = — (4.2.31)
T Y+ Wk
where p = g—é and q = % and the initial conditions y_g, . ..,yo are nonneg-

ative real numbers.

Proof. Substitute x,, = %yn in Eq. (4.2.13)

we get,
s a+ By,
HIn+1l —
then 5
5z T Un
Ynt1 = ——¢
Yn + %yn—k

set p = %—If and ¢ = %, we get Eq. (4.2.31).
]

The Eq. (4.2.31) was investigated by M.J.Douraki and M.Dehghan in [5].
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4.2.11 The Case =B =0: x,.; = —A‘fgi%ik

Lemma 4.2.11. The change of variables x,, = %yn reduces Eq. (4.2.14)
to the difference equation

P+ qyn
bl = T 4.2.32
Yn+1 . ( )
where p = j—g and q = % and the initial conditions y_g, ...,y are nonneg-

ative real numbers.

Proof. Substitute z,, = %yn in Eq. (4.2.14)

we get,
A _a+t BAYn
Oyn+1 A+ C%yn—k
then o s
Yni1 = ?4_2 + Zyn
71+ 1 + Yn—k

set p = j—g and ¢ = % we get Eq. (4.2.32).

The Eq. (4.2.32) was studied by M.Dehghan and M.Razzaghi in [7].
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4.3 Three Parameters are zero

In this section we will study the character of solution of Eq. (3.1.1) where
three parameters are zero. There are eighteen cases for this equation, namely:

a+ Bz,

T =" n=0,12,... (4.3.1)
Tri1 = %’ n=01,2,... (4.3.2)
Tl = % n=0,1,2,... (4.3.3)
Tri1 = w, n=01,2,... (4.3.4)
Tri1 = m%;f”, n=01,2,... (4.3.5)
Tri1 = m%ﬁ’”“ n=012,... (4.3.6)
Tri1 = %, n=0,1,2,... (4.3.7)
Tl = %ﬂ:“k, n=012,... (4.3.8)
Tri1 = %Z"“ n=0,1,2,... (4.3.9)
Tl = m, n=012,... (4.3.10)
Tl = ﬁan’ n=0,1,2,... (4.3.11)
Tpr1 = A++:rn_k’ n=0,1,2,... (4.3.12)
Toi1 = %}’;xn, n=012,... (4.3.13)
Tra1 = %’;M, n=0,1,2,... (4.3.14)
Ty = — D n=01,2,... (4.3.15)

Bz, + Cxp_i’
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YTn—k
= ~0,1,2,... 4.3.16
il Bz, + Cxp_y, " ( )
VTn—k
1 = ok ~0,1,2,... 4.3.17
Tnt1 A+ Bz, " ( )
T nk n=012,... (4.3.18)

Tptl = 7~
1 A + C.Z‘n_k

Where the parameters «, (3, v and A, B, C are non-negative real numbers
and the initial conditions x_g, ..., x_1, xg are arbitrary real numbers, and the
denominator is nonzero.

Of these equations, Eqgs. (4.3.1), (4.3.4) and (4.3.7) are linear difference
equation. Eq. (4.3.2) is a Riccati equation.

4.3.1 The Case y= A=B =0: z,, = &=

Czpg

Lemma 4.3.1. The change of variables x, = gyn reduces Eq. (4.3.3)
to the difference equation

P+ Yn
Yn—k
where p = ‘5—9, and the initial conditions y_y, . .., yo are arbitrary nonnegative
real numbers.
Proof. Substitute z, = gyn in Eq. (4.3.3), we get
B, . ot By,
SYny1 = 5
C ngn—k
Then
B [z—? + yn]
Y1 = —
! ﬁynfk
set, p = ‘g—%‘ we get Eq. (4.3.19)
O

The Eq. (4.3.19) was studied by Alaweneh in [3].
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4.3.2 The Case a =A =C =0: x,, = ﬂ“EZf”"“

Lemma 4.3.2. The change of variables x,, = Ly, reduces Eq. (4.3.5)
to the difference equation
Yo = p+ 2F (4.3.20)

n

where p = g, and the initial conditions y_y, ..., yo are arbitrary nonnegative
real numbers.

Proof. Substitute z,, = Ly, in Eq. (4.3.5), to get

v, BEYn + VB Yn—k

SYn+1 =

B By
then 5

“Yn + Yn—k n—
Ynpl = T——— = b + Ink
Yn Y Yn

set p = % to get Eq. (4.3.20). O

The Eq. (4.3.20) was investigated in [19] by M.Saleh and M.Alogeili, and
in [15] by W.S.He and X.X.Yan.

4.3.3 The Case « =A= B = 0: g, = 2tk

Cxp—k

Lemma 4.3.3. The change of variables x,, = gyn reduces Eq. (4.3.6)

to the difference equation
UYn

Yn—k

Yni1 =D+ (4.3.21)

where p = %, and the initial conditions y_y, ..., yo are nonnegative real num-
bers.

Proof. Substitute x,, = gyn in Eq. (4.3.6) to get:

/3y . ﬁﬁ%yn +‘7%%yn—k
~Yn+1 —
C C%yn—k
then )
yn'+’ﬁyn—k Yn




4 THE SPECIAL CASES afyABC =0 98

set p = 3, we get Eq. (4.3.21).
O
The Eq. (4.3.21) was studied by M.Saleh and M.Alogeili in [20].

434 TheCase 3=A=C=0: xml:‘”;—iz”"
Lemma 4.3.4. The change of variables x, = Ly, reduces Eq. (4.3.8)
to the difference equation

gy = LIk (4.3.22)

Yn

where p = j—@ € (0,00), and the initial conditions y_y,...,yo are arbitrary

nonnegative real numbers.

Proof. Substituting x,, = £y, into Eq. (4.3.8), we can easily get Eq. (4.3.22)
0

Alaweneh in [3] investigated this equation.

4.3.5 The Case 3 =A =B = 0: z,,, = 2%t

Cwnfk

Lemma 4.3.5. The change of variables v, = %y, reduces Eq. (4.3.9) to the

difference equation

gy = LYk (4.3.23)
Yn—k
aC

where p = gl and the initial conditions y_y, . .., yo are arbitrary nonnegative
real numbers.

Proof. Substitute z,, = Zy, in Eq. (4.3.9), to get

C %yn—k
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then
Y [?[y_g + ynfk]
Y1 = ———
YYn—k
set p = ‘f‘y—g to get Eq. (4.3.23).
[
The only positive equilibrium point of Eq. (4.3.23) is
g=1++1+4p.
And the linearized equation
Znt1 + %Zn—k = 0.
)
Theorem 4.3.1. The equilibrium point y = 1 + /1 + 4p is locally stable.
The proof follows from Theorem (3.2.2).
4.3.6 The Case ﬁ =7 =A=0: Tp+1 = an+m
Lemma 4.3.6. The change of variables x,, = \;—f reduces FEq. (4.3.10)
to the difference equation
B C
Y1 = — + (4.3.24)
Yn Yn—k
where the initial conditions y_y, ..., Yo are non negative real numbers.

Proof. By Substituting z,, = \;—f into Eq. (4.3.10) we can get Eq. (4.3.24).
O

A.E.Alweneh studied Eq. (4.3.24) in [3].



4 THE SPECIAL CASES afyABC =0 100

4.3.7 The Case f=7=C =0: 211 = 75~

By the change of variables z,, = % yn Eq. (4.3.11) reduces to Riccati equation

et = 1 n=01,... (4.3.25)

+ Yn
Where p = j;—/j, p € (0,00)

Theorem 4.3.2. The positive equilibrium point

-1+ 1+4p
2

g::

of Eq. (4.3.25) is globally asymptotically stable.

4.3.8 The Case =7=B =0: $n+1=14++u

Lemma 4.3.7. The change of variables x,, = ‘y/—f, reduces Eq. (4.3.12)
to the difference equation

Yni1 =P+ n=0,1,... (4.3.26)

Yn—k

where p = \%, and the initial conditions y_g, ...,y are arbitrary nonnega-

tive real numbers.

Proof. Substitute x,, = y—:‘, we get
va o «
Ynil A+ O
Yn—k
1 1

—> =
A C
Yot Ta Tt n
hence,
A C
+

= et s
set p = \%, we get Eq. (4.3.26).
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The only positive equilibrium point is

p+/p*+4C
5 :

g:

And the linearized equation of this equilibrium point is

Znt1 + —5Rn—k = 0.
Y

Theorem 4.3.3. The equilibrium point yj = AVl ”;HC is locally stable.

The proof follows immediately from Theorem (3.2.2)

Theorem 4.3.4. Let {y,}>° . be a non negative solution of Eq. (4.3.26),
then the following are true.

o If kis even, then Eq. (4.3.26) has no solution of prime period two.

o If kis odd, then Eq. (4.3.26) has prime period two solution, and this
solution take the form

"7¢7p_¢7¢7p_¢7"'

Proof. Let
"7¢7¢7¢7¢""

be a period two solution of the Eq. (4.3.26) where ¢, 1 are positive and
distinct, then

e If k£ is even, then we have

¢:p+% and w:p+%

then po+C = pyp+C = pp = p1p = ¢ = Y which is a contradiction.
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e If k is odd, then

gb:p+% and ¢:p+%

then we get, (¢ — 1) [6+¢ —p =0
when ¢ # 1, this implies that ¢ + 1 = p so the period two solution
must be of the form

e O p— O, 0, p— O, ...

which is complete the proof.

4.3.9 The Case a=7=C =0: z,41 = Afg;n

The change of variables z,, = yin reduces Riccati Eq. (4.3.13) to the linear
equation
A B
+1 3 3 ( )

and Eq. (4.3.27) is linear first order difference equation.

4.3.10 The Case a=vy=B =0: z,,, = A+€~Ixn e

Lemma 4.3.8. The change of variables x,, = gyn reduces Eq. (4.3.14)
to the difference equation

Yn
Ynyl = ———— 4.3.28
* p + Yn—k ( )
where p = %, and the initial conditions y_g, . ..,y are arbitrary nonnegative

real numbers.
Proof. Substitute z, = gyn in Eq. (4.3.14), to get

Cn

AYntl = ———@ag
C " A+ %yn—k
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then
BYn

ﬁ [% + ynfk:|
set p = % to get Eq. (4.3.28). O

Yn+1 =

The Eq. (4.3.28) has two equilibrium points y =0 and y =1 — p.

And the linearized equation

(»+9) g
Zn4+1 — 5 <n + —
T+ (0 +9)?
Theorem 4.3.5. When p > 1 then the equilibrium point y = 0 is locally
stable.

Zn—k — 0.

The proof follows immediately from Theorem (3.2.2).

Theorem 4.3.6. The Eq. (4.3.28) has no solution of prime period two.

Proof. Let
"'7¢7¢7¢7¢7"‘

be a period two solution of Eq. (4.3.28), where ¢ and 1) are two arbitrary
positive and distinct real numbers.

o If kis odd, then y,+1 = y,—r and ¢, 1 satisfy the following systems:

b= and p=—2 (4.3.20)

p+o pt
simplifying the relation in Eq. (4.3.29) to get,

(W=9)p+(p+v)+1] =0
—> ¢+ 1 = —(1 + p) and this impossible.

So ¢ = .
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o If k is even, then y, = y,_r and ¢, 1 satisfy the following systems:

¥ ¢
=—— and = — 4.3.30
i P+ v p+¢ ( )
Simplifying Eq. (4.3.30), we obtain

(@—¥)[p+1]=0
p#—1,50 ¢ = 1.
The proof is complete.

]

Theorem 4.3.7. When p > 1 then the equilibrium point y = 0 of Eq. (4.3.28)
1s globally attractive.

Proof. As the function
x

Pty

is increasing in x, and decreasing in y, V x,y € (0, 00) and
(u,m) is a solution of the system

flz,y) =

flm,p) =m and f(,m) = pi

then p = m.
By using Theorem (3.4.1), the equilibrium point § = 0 is globally attractive.

]

Theorem 4.3.8. Every oscillatory solution of Eq. (4.3.28) has semi-cycles
of length at least k.

Proof. As the function f(x,y) is increasing in x, and decreasing in ¥,
so the proof follows immediately from Theorem (3.3.3). O
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4.3.11 The Case o = ’y :A — O . wn_"_l — anf—xcnx —

Lemma 4.3.9. The change of variables x,, = Ciyn reduces Eq. (4.3.15)
to the difference equation

Yns1 = p+ 22 (4.3.31)
Yn—k

where p = g and the initial conditions y_y, ..., yo are nonnegative real num-
bers.

Proof. Substitute z,, = - in Eq. (4.3.15)

Cyn
we get,
B
B Ben
Cynr1 Bg-+ -
then X
L Yn
B Yn
= Ynt1 =~ t+

C ynfk‘
By setting p = g, we get Eq. (4.3.31).

The Eq. (4.3.31) was investigated by M.Saleh and M.Alogeili in [20]

4.3.12 The Casea=0=A =0: z,., = —Bzﬁ’gf .

Lemma 4.3.10. The change of variables x,, = Biyn reduces Eq. (4.3.16)
to the difference equation

Yo = p + 2 (4.3.32)

n
where p = % and the initial conditions y_y, ..., Yyo are non negative real num-

bers.

Proof. Substitute z, = g~ in Eq. (4.3.16)
we get,

y
Y fYByn—k

BYn+1 N BBLyn + CBynfk
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then )
1 Yn—Ek
1
Yn+1 Byn_k Yn
C Yn—k
= Yn+1 B + "

set p = %, we get Eq. (4.3.32).
]

The Eq. (4.3.32) was studied in [15] by W.He and X.X.Yan, also in [19]
by M.Saleh and Alogeili.

4.3.13 The Case a=0=C=0: x,.1 = %ﬁz

Lemma 4.3.11. The change of variables x, = Ly, reduces Eq. (4.3.17)
to the difference equation

Yn—k
ot (

where p = %, and the initial conditions y_g, . ..,y are arbitrary nonnegative
real numbers.
Proof. Substitute x,, = Fy, in Eq. (4.3.17), to get

Dy = BYnk

B?Jn+1 A+ %yn
then

Ynt1 = Ik

gl [% + yn]

set p = % to get Eq. (4.3.33). O

The Eq. (4.3.33) has two equilibrium points § =0 and =1 — p.

And the linearized equation
vy, +y)
(p+9)? (p+9)?

Zn+1 T n Zn—r = 0.
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Theorem 4.3.9. The equilibrium point y = 0 s locally stable when p > 1.
The proof follows immediately from Theorem (3.2.2).

Theorem 4.3.10. The Eq. (4.3.33) has no solution of prime period two.

Proof. The proof is the same as proof Theorem (4.3.6), so is omitted.

]

Theorem 4.3.11. Assume that p > 1 then the equilibrium point § = 0 of
Eq. (4.3.33) is globally attractive.

Proof. Let the function

_ Y
f(x’y)—p—l—m

where f: (0,00) x (0,00) — (0, 00) is continuous function,

as f(x,y) is decreasing in z, and increasing in y,V z,y € (0,00) and the
difference equation has no solution of prime period two in (0, 00). Then by
using Theorem (3.4.3), the equilibrium point § = 0 is global attractive.

[]

Theorem 4.3.12. Every oscillatory solution of Eq. (4.3.33) has semi-cycles
of length k.

Proof. As the function f(xz,y) is decreasing in x, and increasing in y, so the
proof follows immediately from Theorem (3.3.4). O

4.3.14 The Case a=0=B =0: z,41 = —Ar:c"{kfk

Lemma 4.3.12. The change of variables v, = &y, reduces Eq. (4.3.18) to
the difference equation

Yn—k
* D+ Yn—k ( )
where p = %, and the initial conditions y_g, . ..,y are arbitrary nonnegative

real numbers.
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Proof. Substitute z,, = Zy, in Eq. (4.3.18), to get

ly _ %ynfk:
C n+1 A + %ynik
then
_ VYn—k
Yn+1 = a1
set p = % to get Eq. (4.3.34) O

The Eq. (4.3.34) has two equilibrium points § =0 and =1 — p.

And the linearized equation

Zn4+1 — L_znfk = 0.
(p+9)?

Theorem 4.3.13. Assume that p > 1 then the equilibrium point y = 0 is
locally stable.

The proof follows immediately from Theorem (3.2.2).

Theorem 4.3.14. The Eq. (4.3.34) has no solution of prime period two.

Proof. Let
"7¢7¢7¢7¢""

be a period two solution of Eq. (4.3.34), where ¢ and 1) are two arbitrary
positive and distinct real numbers.

o If k is odd, then y,,1 = y,_ and ¢, 1 satisfy the following systems:

9 _
¢_p+¢ and ¢_p+¢ (4.3.35)

simplifying the relation in Eq. (4.3.35) to get,

(@—d)lp+(o+¢)—1=0
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— ¢+ =1—p when p > 1 then ¢ + ¢ is negative and this
impossible.

So ¢ = .

e If k is even, then y,, = y,_, and ¢, 1 satisfy the following systems:

oy 9
¢ = P and ¢ = s (4.3.36)
Simplifying Eq. (4.3.36), we obtain
(@—¥)[p+1]=0
as p# —1, 80 ¢ = .

The proof is complete.
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4.4 Four Parameters are zero

In this section we will study the character of solution of Eq. (3.1.1) where
four parameters are zero. There are (9)cases for this equation, namely:

YTn—k

i1 = , ~0,1,2, ... 44.1

Ln+1 Car i n ( )

Tpr1 = %, n=0,1,2,... (4.4.2)

By,

Tpyl = Bz, n=0,1,2,... (4.4.3)
0

Tpyl = Br.’ n=0,1,2,... (4.4.4)
(0

. -0,1,2,... 44.5
Tn+1 Car s n ( )

Tl = ﬂ—fl”, n=0,1,2,... (4.4.6)

By,

n — :0, 172,... 447
Tn+1 Car s n ( )
Tl = WIZ"“, n=01,2,... (4.4.8)
Ty = 7;’;*, n=0,1,2,... (4.4.9)

Where the parameters «, 3, v and A, B, C are non-negative real numbers
and the initial conditions x_y, ..., x_1, zo are arbitrary real numbers, and the
denominator is nonzero.

Of these nine equations, Eqgs. (4.4.1), (4.4.2) and (4.4.3) are trivial.
Eqgs. (4.4.6) and (4.4.8) are linear difference equations.
Every solution of Eq. (4.4.4) is periodic with period two, and every

solution of Eq. (4.4.5) is periodic with period 2(k + 1). So, we just study
Eqgs. (4.4.7) and (4.4.9).
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4.4.1 Thecasea=~v=A =B =0: x,,, = Bn

Cznfk

By the change of variables z,, = g e¥» Eq. (4.4.7) reduces to the difference
equation
Yn+1 = Yn — Yn—k (4410)

when k& = 1, then every positive solution of Eq. (4.4.10) is periodic with
period six, and its solution is:

Zo 1 1 Tr_1

ey, X1, Xo, ) ’ ) )
r_1 -1 g Xo

also, when k = 1, the following difference equation
Yn+l T Yn—k — Yn = 0

has a general solution

Yn = (1)" | ¢ cos 3 + ¢ 8in 5

nm ) nﬂ]
where r =1, and 0 = Z.

Lemma 4.4.1. The equilibrium point of Eq. (4.4.10) is unstable when k > 2.

The proof is consequently from Theorem (3.2.2).

4.4.2 The case a =3 =C =A =0: 2, = —”EZ;’“

The change of variables x, = & e¥* reduces Eq. (4.4.9) to the difference
equation

Ynt1 — Yn—k +Yn n=0,1,... (4.4.11)
this transformation, substitute z,, = % e’ in Eq. (4.4.9), so we get
Vs _ 1
B B evn
cancel % from both side, we obtain
eYn—k

eyn+1 —

eyn
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then
eyn+1 — eynfke_yn _— Ynil — Yn—k + Un



4 THE SPECIAL CASES afyABC =0 113

when k£ = 1, then the following difference equation

Yn+1 — Yn—k + Yn = 0

has a general solution

a5 o (259

Lemma 4.4.2. The equilibrium point of Eq. (4.4.11) is unstable when k > 2.

The proof is consequently from Theorem (3.2.2).
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4.5 Numerical Analysis

To illustrate the results of the previous chapters and to support our theoret-
ical discussion, we will consider a few numerical examples in this section.
These examples represent different types of qualitative behavior of solutions
to nonlinear difference equations.

Example 4.5.1. Consider the third order difference equation when k=2
in Eq. (3.2.1):

P+ Yn+ Lyni

q+ Y+ dyn—i

Yn+1 =

And assume that p=9, q=5, L=3 and d=4. So the equation will be
reduced to the following:

9 + Yn + 3yn—2
5 + Yn + 4yn—2 ‘

Yn+1 =

We assume the initial points {y_2,y_1,90} are {.3,.1,.8}.
Then, the results is below.

>> diffequation

First: Input The Constants Values 0f Your Difference Equation

The value of the positive parameters p= 9\\
The value of the positive parameters 1= 3\\
The value of the positive parameters g= 5\\
The value of the positive parameters d=4
Second: Input The value of k

=2

Third: Enter the initial conditions of Diff.Equation
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Enter the value of y
y=.3
Enter the value of y
y=.1
Enter the value of y
y=.8

n y(n) n y(n) n y(n) n y(n)
1.0000 0.3000  26.0000 1.6016 51.0000 1.6026 76.0000 1.6026
2.0000 0.1000  27.0000 1.6000 52.0000 1.6027  77.0000 1.6026
3.0000 0.8000 28.0000 1.6124  53.0000 1.6026 78.0000 1.6026
4.0000 4.6522 29.0000 1.6026 54.0000 1.6026 79.0000 1.6026
5.0000 2.7080  30.0000 1.6040 55.0000 1.6026 80.0000 1.6026
6.0000 2.1032  31.0000 1.5975  56.0000 1.6026 81.0000 1.6026
7.0000 0.9880  32.0000 1.6030 57.0000 1.6026 82.0000 1.6026
8.0000 1.2467 33.0000 1.6019 58.0000 1.6026 83.0000 1.6026
9.0000 1.4075 34.0000 1.6054 59.0000 1.6026 84.0000 1.6026

10.0000 2.1066  35.0000 1.6023 60.0000 1.6026 85.0000 1.6026
11.0000 1.7802  36.0000 1.6030 61.0000 1.6026 86.0000 1.6026
12.0000 1.7014  37.0000 1.6012  62.0000 1.6026 87.0000 1.6026
13.0000 1.3913 38.0000 1.6029 63.0000 1.6026 88.0000 1.6026
14.0000 1.5285 39.0000 1.6024 64.0000 1.6026 89.0000 1.6026
15.0000 1.65577  40.0000 1.6034 65.0000 1.6026  90.0000 1.6026
16.0000 1.7303 41.0000 1.6024 66.0000 1.6026 91.0000 1.6026
17.0000 1.6341  42.0000 1.6028 67.0000 1.6026 92.0000 1.6026
18.0000 1.6245  43.0000 1.6022  68.0000 1.6026  93.0000 1.6026
19.0000 1.5391 44 .0000 1.6028 69.0000 1.6026 94.0000 1.6026
20.0000 1.5903 45.0000 1.6026  70.0000 1.6026 95.0000 1.6026
21.0000 1.5921  46.0000 1.6028 71.0000 1.6026 96.0000 1.6026
22.0000 1.6376  47.0000 1.6025  72.0000 1.6026  97.0000 1.6026
23.0000 1.6069  48.0000 1.6027  73.0000 1.6026  98.0000 1.6026
24 .0000 1.6079  49.0000 1.6025  74.0000 1.6026 99.0000 1.6026
25.0000 1.5844  50.0000 1.6027  75.0000 1.6026 100.0000 1.6026
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Some Analysis 0f The Results:
1- As K is even, there is no positive period two solutions
2- Since (p+1)>(gq+d), p >q & d >1 Then The Following Are True:

(a) The Equilibrium point is asymptotically stable
(b) = = = is globally asymptotically stable

The End
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Figure 4.5.1: Plot of y,,1 = %

Example 4.5.2. Consider the second order difference equation when k=1
in Eq. (3.2.1):
P+ Yn + Lyn—
¢+ Yo+ dyn-r

And assume that p=2, q=7, L=6 and d=1. So the equation will be
reduced to the following:

Yn+1 =

2 + Yn + Gyn—l
7 + Yn + 1yn71 '

Yn+1 =

We assume the initial points {y_1,yo} are {.9,2.3}.
Then, the results is below.

>> diffequation

First: Input The Constants Values 0f Your Difference Equation
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The value of the positive parameters p= 2 \\
The value of the positive parameters 1= 6 \\
The value of the positive parameters q= 7\\
The value of the positive parameters d= 1
Second: Input The value of k

k=

Third: Enter the initial conditions of Diff.Equation

Enter the value of y
y=.9

Enter the value of y
y=2.3

n y(n) n y(n) n y(n) n y(n)
1.0000 0.9000 26.0000 1.1019 51.0000 1.1019 76.0000 1.1019
2.0000 2.3000  27.0000 1.1019  52.0000 1.1019  77.0000 1.1019
3.0000 1.1279  28.0000 1.1019  53.0000 1.1019  78.0000 1.1019
4.0000 0.9826  29.0000 1.1019  54.0000 1.1019  79.0000 1.1019
5.0000 1.0982 30.0000 1.1019 55.0000 1.1019 80.0000 1.1019
6.0000 1.1276 31.0000 1.1019 56.0000 1.1019 81.0000 1.1019
7.0000 1.1023  32.0000 1.1019  57.0000 1.1019  82.0000 1.1019
8.0000 1.0970  33.0000 1.1019  58.0000 1.1019  83.0000 1.1019
9.0000 1.1019  34.0000 1.1019  59.0000 1.1019  84.0000 1.1019

10.0000 1.1028  35.0000 1.1019  60.0000 1.1019 85.0000 1.1019
11.0000 1.1019 36.0000 1.1019 61.0000 1.1019 86.0000 1.1019
12.0000 1.1017 37.0000 1.1019 62.0000 1.1019 87.0000 1.1019
13.0000 1.1019  38.0000 1.1019  63.0000 1.1019  88.0000 1.1019
14.0000 1.1019  39.0000 1.1019  64.0000 1.1019  89.0000 1.1019
15.0000 1.1019  40.0000 1.1019  65.0000 1.1019  90.0000 1.1019
16.0000 1.1019 41.0000 1.1019 66.0000 1.1019 91.0000 1.1019
17.0000 1.1019 42.0000 1.1019 67.0000 1.1019 92.0000 1.1019
18.0000 1.1019  43.0000 1.1019  68.0000 1.1019  93.0000 1.1019
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19.
20.
.0000
22.
23.
24.
25.

21

0000
0000

0000
0000
0000
0000

.1019
.1019
.1019
.1019
.1019
.1019
.1019

e e

44 .
45.
46.
47.
48.
49.
50.

0000
0000
0000
0000
0000
0000
0000

Some Analysis Of The Results:

1- The Equilibrium Point 0f This Equation =1.0000
there is a prime period two solution

>>

The End

e e

.1019
.1019
.1019
.1019
.1019
.1019
.1019

69.
70.
.0000
72.
73.
4.
75.

71

0000
0000

0000
0000
0000
0000

e e e

.1019
.1019
.1019
.1019
.1019
.1019
.1019

119

94.
95.
96.
97.
98.
99.

100

0000
0000
0000
0000
0000
0000
.0000

e e =

.1019
.1019
.1019
.1019
.1019
.1019
.1019
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plot of y{n+1)=(p+yir) Hy(n-kD Ay () +q ™y (h-k])

—— =1
24_ ............. -
T T -

2_ .....................................................................................
J B e e e ]
£
-
1.6_ ................................................................................... -
it et rmrdnin i s e e R R R e R e e -
X589
T2 H N AfiE -
d ]
1 S OO S T
08 1 1 1 i 1
20 40 60 g0 100 120

N-iteration

Figure 4.5.2: Plot of y,,1 = %

Example 4.5.3. Consider the fourth order difference equation when k=3
in Eq. (3.2.1):
_ P+ Ynt Ly
I T Y g

And assume that p=6, q=5, L=7 and d=10. So the equation will be
reduced to the following:

6 + Yn + 7yn—3
5+ Yn + 1Oyn—3 .

Yn+1 =

We assume the initial points {y_3,y_2,y-1,v0} are {1,.4,.28,0}.
Then, the results is below.

>> diffequation

First: Input The Constants Values Of Your Difference Equation
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The value of the positive parameters p= 6
The value of the positive parameters 1= 7
The value of the positive parameters gq= 5

The value of the positive parameters d= 10

Second: Input The value of k

=3

Third: Enter the initial conditions of Diff.Equation

Enter the value of y
y=1

Enter the value of y
y=.4

Enter the value of y
y=.28

Enter the value of y
y=0

n y(n) n y(n) n y(n) n y(n)
1.0000 1.0000  26.0000 1.8686  51.0000 1.8685  76.0000 1.8685
2.0000 4000  27.0000 1.8683  52.0000 1.8685  77.0000 1.8685
3.0000 0.2800  28.0000 1.8682  53.0000 1.8685  78.0000 1.8685
4.0000 0 29.0000 1.8687  54.0000 1.8685  79.0000 1.8685
5.0000 2.6000  30.0000 1.8685  55.0000 1.8685  80.0000 1.8685
6.0000 2.4783  31.0000 1.8686  56.0000 1.8685 81.0000 1.8685
7.0000 2.6915  32.0000 1.8686  57.0000 1.8685  82.0000 1.8685
8.0000 3.2293  33.0000 1.8685  58.0000 1.8685  83.0000 1.8685
9.0000 1.6901  34.0000 1.8685  59.0000 1.8685  84.0000 1.8685

10.0000 1.7781  35.0000 1.8685  60.0000 1.8685  85.0000 1.8685
11.0000 1.7471  36.0000 1.8685  61.0000 1.8685  86.0000 1.8685
12.0000 1.6963  37.0000 1.8685  62.0000 1.8685  87.0000 1.8685
13.0000 1.9244  38.0000 1.8685  63.0000 1.8685  88.0000 1.8685
14.0000 1.8836  39.0000 1.8685  64.0000 1.8685  89.0000 1.8685
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15.
16.
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20.
.0000
22.
23.
24.
25.

21

0000
0000
0000
0000
0000
0000

0000
0000
0000
0000

.8941
.9053
.8544
.8665
.8634
.8613
.8721
.8687
.8696
.8699
.8677

R T e e = el = S S

40.
41.
42.
43.
44 .
45.
46.
47 .
48.
49.
50.

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

Some Analysis Of The Results:
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0000
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e

- Since (p+1)<(q+d), p >q & d >1 Then The Following Are

(a) The Equilibrium point

(b)

>>

= = is globally asymptotically stable

is asymptotically stable
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plot of y{n+1)=(p+yir) Hy(n-kD Ay () +q ™y (h-k])
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Figure 4.5.3: Plot of y,.1 = %

5 Matlab Code 7.1

The mfile function investigate the nonlinear rational difference equation:

P+ Yn + Lyn—i
q+ Yn + dyn—s

Yn+1 =

Where the parameters p, q, L and d and the initial conditions are non neg-
ative real numbers.

We create this file to find the computational solution and to compare be-
tween the theoretical approach, and computational approach.

%Dynamical Of Non Linear Difference Equation
%hAyah Asad

Jprogram 1

clear all

format short

SR

disp(’ - )5
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fprintf (’\n
First: Input The Constants Values Of Your Difference Equation \n’)
disp(’ ”)

p=input (’The value of the positive parameters p= ’);

1=input (’The value of the positive parameters 1= ’);

g=input (’The value of the positive parameters q= ’);

d=input (’The value of the positive parameters d= ’);

disp(® === )

k=input (’Second: Input The value of k \n k= ’);

disp(’  —mmm—— ")
fprintf(1,’\n Third: Enter the initial conditions of the
Diff.Equation\n ’)

disp(’ )

Vi

ans=pqdlk(p,q,d,1,k); disp(’ = -—————- ?)

disp(’The results are: ’)

disp(’ _
disp(’ n y(n) n y(n) n y(n) n

y(n)?)

disp(__
D=[ans(1:25,:),ans(26:50,:),ans(51:75,:) ,ans(76:100,:)]; disp(D)

dispCC ~ —mmmm-- )5

disp(’Some Analysis 0f The Results:’)

if rem(k,2)==

fprintf(’\n 2- As K is even ,there is no positive period two solutions \n ’)
else

if 1<(1+q)
if d >1
fprintf (°’\n 2- As 1<1+q ,d>1 & K is odd, there is no positive
period two solution \n’)

else

fprintf (’there is a prime period two solution’)
end

end
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end
EI=(p+1)/(d+q);
disp(’ ”)
if (p+1)>(q+d)
if p>q
ifd>1
disp(’3- Since (p+1)>(gq+d), p >q & d >1’)

disp(’Then The Following is True:’)
fprintf(’\n (b) = = = is globally asymptotically stable ’)
fprintf(’\n (b) = = = is locally asymptotically stable ’)
end
end
end
Do
if (p+1)<(gq+d)
if p>q
ifd>1
disp(’3- Since (p+1)<(gq+d), p >q & d >1’)

disp(’Then The Following are True:’)
fprintf(’\n (b) = = = is globally asymptotically stable \n’)
fprintf(’\n (b) = = = is locally asymptotically stable \n’)
end
end

end

disp(C’ -====—- )
disp(’ The End ”)

Vo HIHHHHH
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function ans=pqdlk(p,q,d,1l,k); for i=1:k+1;
y(i)=input (’Enter the value of y \n y=’);
end

for n=k+1:100;
y(n+1)=(p+y(n)+1*xy(n-k) )/ (y(n) +q*y (n-k)) ;

y(n+1);
end t=1:101;

ans=[t;yl’;
plot(t,y,’b.-’) xlabel(’N-iteration’); ylabel(’Y(N)’);
title(’plot of y(nt+1)=(p+y(n)+l*y(n-k))/(y(n)+g*xy(n-k)) ’)
hold on

grid on
pl=strcat(’k=’,num2str(k));

legend(p1)
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